Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-34989
Nucleic Acids Res 1984 Jun 25;1212:5015-24. doi: 10.1093/nar/12.12.5015.
Show Gene links Show Anatomy links

Reduced repeat length of nascent nucleosomal DNA is generated by replicating chromatin in vivo.

Jakob KM , Ben Yosef S , Tal I .


???displayArticle.abstract???
Micrococcal nuclease digestion of nuclei from sea urchin embryos revealed transient changes in chromatin structure which resulted in a reduction in the repeat length of nascent chromatin DNA as compared with bulk DNA. This was considered to be entirely the consequence of in vivo events at the replication fork (Cell 14, 259, 1978). However, a micrococcal nuclease-generated sliding of nucleosome cores relative to nascent DNA, which might account for the smaller DNA fragments, was not excluded. In vivo [3H]thymidine pulse-labeled nuclei were fixed with a formaldehyde prior to micrococcal nuclease digestion. This linked chromatin proteins to DNA and thus prevented any in vitro sliding of histone cores. All the nascent DNAs exhibiting shorter repeat lengths after micrococcal nuclease digestion, were resolved at identical mobilities in polyacrylamide gels of DNA from fixed and unfixed nuclei. We conclude that these differences in repeat lengths between nascent and bulk DNA was generated in vivo by changes in chromatin structure during replication, rather than by micrococcal nuclease-induced sliding of histone cores in vitro.

???displayArticle.pubmedLink??? 6739296
???displayArticle.pmcLink??? PMC318896
???displayArticle.link??? Nucleic Acids Res


Genes referenced: LOC100887844 LOC115919910

References [+] :
Annunziato, Maturation of nucleosomal and nonnucleosomal components of nascent chromatin: differential requirements for concurrent protein synthesis. 1982, Pubmed