Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-34538
Exp Cell Res 1984 May 01;1521:188-94. doi: 10.1016/0014-4827(84)90243-x.
Show Gene links Show Anatomy links

dCMP-aminohydrolase activity during early sea urchin development. An example of negative enzyme control during embryogenesis.

De Petrocellis B , Pratibha M , Maharajan V .


???displayArticle.abstract???
In sea urchin, unfertilized eggs have a very high level of dCMP-aminohydrolase (dCMPase) activity, which decreases gradually and at the pluteus stage it is only about a quarter of that found in the unfertilized egg. But in abnormal embryos and in disaggregated cells from embryos, no decrease in the dCMPase activity takes place. To understand the control mechanism involved in this enzyme activity during development, we have analyzed the effect of various drugs which interfere with information transfer, such as actinomycin C, puromycin, 5-azacytidine, 2-thio-uracil and p-fluoro-DL-phenylalanine on dCMPase activity in embryos of Paracentrotus lividus and Sphaerechinus granularis. Among these drugs only actinomycin induces a remarkable increase of the dCMPase activity in embryos with respect to unfertilized eggs. Puromycin has a differential and dose-dependent effect. Other drugs, although they affect normal development and macromolecular synthesis, do not significantly alter the dCMPase activity. On the basis of these results we suggest the presence of a repressor mechanism in the control of dCMP-aminohydrolase level during early embryogenesis of sea urchin.

???displayArticle.pubmedLink??? 6201371
???displayArticle.link??? Exp Cell Res


Genes referenced: amdhd1 LOC100887844