Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32318
Exp Cell Res 1987 Mar 01;1691:169-77. doi: 10.1016/0014-4827(87)90235-7.
Show Gene links Show Anatomy links

Activation of amino acid uptake at fertilization in the sea urchin egg. Requirement for proton compartmentalization during cytosolic alkalosis.

Allemand D , de Renzis G , Girard JP , Payan P .


???displayArticle.abstract???
The comparative importance of the release of intracellular ionic calcium, Na+/H+ exchange and cytosolic alkalosis as activator signals was studied on the development of amino acid uptake at fertilization in sea urchin eggs. We show that, once stimulated, the rate of valine uptake is greatly dependent upon intracellular pH. Suppression of the Na+/H+ exchange at the time of activation, by applying ionophore (A23187) in sodium-free artificial sea water (ONaASW), inhibits the development of valine influx. This cannot be restored by a further (30 min later) alkalosis by transferring eggs into sea water. Suppressing the alkalosis in the presence of Na+/H+ exchange at fertilization by simultaneous addition of acid into sea water results in activation of the amino acid carrier which exhibits an increased rate of transport as soon as the eggs are replaced in sea water at pH 8.0. The absence of alkalosis in eggs activated in ONaASW can be counterbalanced either by adding NH4Cl 10 mM or by transfer into ASW at pH 9.0 at activation. Ammonia-treated eggs absorbed amino acid as controls, whereas eggs in sea water at pH 9.0 failed to develop a valine uptake system, suggesting that ammonia can completely replace the effect of Na+/H+ exchange. Furthermore, addition of NH4Cl immediately before fertilization conceals the Na+/H+ exchange but stimulates valine uptake as in controls. These data suggest that: the occurrence of the intracellular calcium increase alone is not sufficient for the develpment of the amino acid transport system; cell alkalinization at fertilization derives from the cytoplasmic membrane-located Na+/H+ exchange and an inward movement of protons into a cortical acidic compartment, which is discussed.

???displayArticle.pubmedLink??? 3028843
???displayArticle.link??? Exp Cell Res


Genes referenced: LOC100887844 LOC115919910 LOC593358