Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32235
J Mol Biol 1987 Jun 20;1954:919-27. doi: 10.1016/0022-2836(87)90495-5.
Show Gene links Show Anatomy links

Substructure of sea urchin egg cytoplasmic dynein.

Hisanaga S , Hirokawa N .


???displayArticle.abstract???
The substructure of the cytoplasmic dynein molecule was studied using the quick-freeze, deep-etch technique. Cytoplasmic dynein purified as a 12 S form from the eggs of the sea urchin Hemicentrotus pulcherrimus was composed of a single high molecular weight polypeptide. Rotary shadowing images of cytoplasmic dynein either sprayed on to a mica surface or quick-frozen on mica flakes demonstrated a single-headed molecule, in contrast to the two-headed molecule of sea urchin sperm flagellar 21 S dynein. More detailed substructure was visualized by rotary shadowing after quick-freeze deep-etching. Cytoplasmic dynein consisted of a head and a stem. The head was pear-shaped (16 nm X 11 nm) and a little smaller than the pear-shaped head of 21 S dynein (18 nm X 14 nm). The form of the stem was irregular, and its apparent length varied from 0 to 32 nm. Binding of cytoplasmic dynein to brain microtubule in the solution was observed by negative staining, and that in the precipitate was examined by the quick-freeze, deep-etch method as well. Both methods revealed the presence of two kinds of microtubules, one a fully decorated microtubule and the other a non-decorated microtubule. Cytoplasmic dynein bound to microtubule also appeared as a globular particle. Neither the periodic binding nor the crossbridges that were observed with 21 S dynein were formed by cytoplasmic dynein, although cytoplasmic dynein appeared to bind to microtubules co-operatively.

???displayArticle.pubmedLink??? 2958634
???displayArticle.link??? J Mol Biol


Genes referenced: dnah3 LOC100887844