Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-31795
J Physiol 1987 Sep 01;390:397-413. doi: 10.1113/jphysiol.1987.sp016708.
Show Gene links Show Anatomy links

Calcium current and calcium-activated inward current in the oocyte of the starfish Leptasterias hexactis.

Lansman JB .


???displayArticle.abstract???
1. Inward currents in the immature oocyte of the starfish Leptasterias hexactis were studied with a two-micro-electrode voltage clamp. Experiments investigated the role of Ca2+ in the Na+-dependent plateau of the action potential. 2. Voltage steps more positive than -55 mV produced inward currents in normal sea water that activated and then decayed to a non-zero level with a double-exponential time course. Returning the voltage to the resting potential produced an inward tail current that relaxed slowly to zero with a time course of seconds. 3. Replacing Na+ with choline abolished the slowly decaying component as well as the slow tail current which followed the end of the voltage pulse. This suggested that inward current in Na+-containing sea water consisted of a rapidly decaying component that flowed through Ca2+ channels and a more slowly decaying component carried by Na+. 4. Ca2+ current was isolated in Na+-free sea water. Activation followed a sigmoidal time course that could be described with m2 kinetics. Inactivation during a maintained depolarization followed first-order kinetics and was voltage dependent. 5. When Ba2+ was substituted for Ca2+ as the divalent ion charge carrier, inward currents in Na+-containing sea water decayed along a single-exponential time course. The absence of a slowly decaying Na+ current in Ba2+-containing sea water suggested that Na+ current depended on Ca2+ influx. 6. The effects of altering Ca2+ influx on the time course of Na+ current were investigated. Na+ current decayed more rapidly as the test pulse potential was made more positive, while raising [Ca2+]o slowed the decaying phase without altering its dependence on membrane potential. 7. Tail currents measured after rapidly stepping the membrane potential back to the resting level consisted of a fast component associated with the closing of Ca2+ channels and a slow component that was abolished by removing Na+. 8. The variation of the amplitude of the slow component of tail current with the duration of the voltage-clamp pulse indicated that Na+ current is associated with a time-dependent component of membrane conductance. 9. Possible mechanisms for the slowly decaying Na+ current are considered. The results are discussed in relation to the idea that the conductance change to Na+ follows the time course of Ca2+ accumulation and removal from the cytoplasm.

???displayArticle.pubmedLink??? 2450996
???displayArticle.pmcLink??? PMC1192188
???displayArticle.link??? J Physiol
???displayArticle.grants??? [+]

Genes referenced: LOC100887844

References [+] :
Almers, Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. 1984, Pubmed