Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Dev Biol
2008 Jun 15;3182:360-5. doi: 10.1016/j.ydbio.2008.02.056.
Show Gene links
Show Anatomy links
A new method, using cis-regulatory control, for blocking embryonic gene expression.
Smith J
,
Davidson EH
.
???displayArticle.abstract???
Many genes, and particularly regulatory genes, are utilized multiple times in unrelated phases of development. For studies of gene function during embryogenesis, there is often need of a method for interfering with expression only at a specific developmental time or place. Here we show that in sea urchin embryos cis-regulatory control systems which operate only at specific times and places can be used to drive expression of short designed sequences targeting given primary transcripts, thereby effectively taking out the function of the target genes. The active sequences are designed to be complementary to intronic sequences of the primary transcript of the target genes. In this work, the target genes were the transcription factors alx1 and ets1, both required for skeletogenesis, and the regulatory drivers were from the sm30 and tbr genes. The sm30 gene is expressed only after skeletogenic cell ingression. When its regulatory apparatus was used as driver, the alx1 and ets1 repression constructs had the effect of preventing postgastrular skeletogenesis, while not interfering with earlier alx1 and ets1 function in promoting skeletogenic mesenchyme ingression. In contrast, repression constructs using the tbr driver, which is active in blastula stage, block ingression. This method thus provides the opportunity to study regulatory requirements of skeletogenesis after ingression, and may be similarly useful in many other developmental contexts.
Armstrong,
Cell-cell interactions regulate skeleton formation in the sea urchin embryo.
1993, Pubmed,
Echinobase
Armstrong,
Cell-cell interactions regulate skeleton formation in the sea urchin embryo.
1993,
Pubmed
,
Echinobase
Arnone,
Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae.
1997,
Pubmed
,
Echinobase
Bolouri,
Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics.
2003,
Pubmed
,
Echinobase
Davidson,
The sea urchin genome: where will it lead us?
2006,
Pubmed
,
Echinobase
Dickey-Sims,
Runx-dependent expression of PKC is critical for cell survival in the sea urchin embryo.
2005,
Pubmed
,
Echinobase
Ettensohn,
Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
2003,
Pubmed
,
Echinobase
Ettensohn,
Cell lineage conversion in the sea urchin embryo.
1988,
Pubmed
,
Echinobase
Frudakis,
Two cis elements collaborate to spatially repress transcription from a sea urchin promoter.
1995,
Pubmed
,
Echinobase
George,
Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein.
1991,
Pubmed
,
Echinobase
Hannon,
RNA interference.
2002,
Pubmed
Howard-Ashby,
High regulatory gene use in sea urchin embryogenesis: Implications for bilaterian development and evolution.
2006,
Pubmed
,
Echinobase
Imamura,
Molecular cloning and functional characterization of zebrafish ATM.
2005,
Pubmed
Kotzamanis,
Recombining overlapping BACs into a single larger BAC.
2004,
Pubmed
Livant,
Differential stability of expression of similarly specified endogenous and exogenous genes in the sea urchin embryo.
1991,
Pubmed
,
Echinobase
Oliveri,
A regulatory gene network that directs micromere specification in the sea urchin embryo.
2002,
Pubmed
,
Echinobase
Oliveri,
Gene regulatory network controlling embryonic specification in the sea urchin.
2004,
Pubmed
,
Echinobase
Oliveri,
Global regulatory logic for specification of an embryonic cell lineage.
2008,
Pubmed
,
Echinobase
Revilla-i-Domingo,
R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
2004,
Pubmed
,
Echinobase
Revilla-i-Domingo,
A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
2007,
Pubmed
,
Echinobase
Rizzo,
Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
2006,
Pubmed
,
Echinobase
Sutou,
Knockdown of the bovine prion gene PRNP by RNA interference (RNAi) technology.
2007,
Pubmed