Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-39985
Comp Biochem Physiol A Mol Integr Physiol 2007 Jan 01;1461:54-62. doi: 10.1016/j.cbpa.2006.09.005.
Show Gene links Show Anatomy links

Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen.

Mydlarz LD , Harvell CD .


???displayArticle.abstract???
The enzymatic defense mechanisms of Gorgonia ventalina to the fungal pathogen Aspergillus sydowii may play important roles in colony resistance to infection. In this study, we examined the role of the superfamily of peroxidase enzymes in the coral response to a naturally occurring pathogen. We examined the inducibility of peroxidases by experimentally exposing corals to A. sydowii and found that peroxidase activity was induced after an 8 day incubation period. In contrast, naturally infected corals collected from the reef had lower peroxidase activity when compared to healthy corals. Infected sea fans from the field also had less measurable protein in their tissues and increased purple sclerites near infection sites and it is likely that these infections are months old. Using native-PAGE activity gels, we detected 5 peroxidase isozymes in healthy corals, indicating that multiple isoforms of peroxidase with a plurality of possible functions are present in this coral. The role of the peroxidase enzymes in disease resistance was examined by testing anti-fungal activity of commercially available and partially purified sea fan peroxidases. In both cases there was significant, dose-dependent anti-fungal activity. While peroxidases are ubiquitous enzymes involved in many cellular pathways, we also hypothesize that G. ventalina utilizes these enzymes as an integral component in disease resistance pathways. As such, they may also contribute to the initiation of physiochemical defenses such as melanization and lipid soluble anti-fungal metabolites.

???displayArticle.pubmedLink??? 17064941
???displayArticle.link??? Comp Biochem Physiol A Mol Integr Physiol


Genes referenced: LOC100887844