Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52682
Anal Sci 2024 Feb 01;402:301-308. doi: 10.1007/s44211-023-00459-6.
Show Gene links Show Anatomy links

A disposable sensor based on one-pot synthesized tungsten oxide nanostructure-modified screen printed electrodes for selective detection of dopamine and uric acid.

Oğuz M , Aykaç A , Şen M .


Abstract
Here, screen-printed carbon electrodes (SPCEs) were modified with ultrafine and mainly mono-disperse sea urchin-like tungsten oxide (SUWO3) nanostructures synthesized by a simple one-pot hydrothermal method for non-enzymatic detection of dopamine (DA) and uric acid (UA) in synthetic urine. Sea urchin-like nanostructures were clearly observed in scanning electron microscope images and WO3 composition was confirmed with XRD, Raman, FTIR and UV-Vis spectrophotometer. Modification of SPCEs with SUWO3 nanostructures via the drop-casting method clearly reduced the Rct value of the electrodes, lowered the ∆Ep and enhanced the DA oxidation current due to high electrocatalytic activity. As a result, SUWO3/SPCEs enabled highly sensitive non-enzymatic detection of DA (LOD: 51.4 nM and sensitivity: 127 µA mM-1 cm-2) and UA (LOD: 253 nM and sensitivity: 55.9 µA mM-1 cm-2) at low concentration. Lastly, SUWO3/SPCEs were tested with synthetic urine, in which acceptable recoveries for both molecules (94.02-105.8%) were obtained. Given the high selectivity, the sensor has the potential to be used for highly sensitive simultaneous detection of DA and UA in real biological samples.

PubMed ID: 37971693
Article link: Anal Sci
Grant support: [+]


References [+] :
Chen, Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. 2011, Pubmed