Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-35149
Proc Natl Acad Sci U S A 1980 Aug 01;778:4653-6. doi: 10.1073/pnas.77.8.4653.
Show Gene links Show Anatomy links

Developmental shifts in frequency distribution of polysomal mRNA and their posttranscriptional regulation in the sea urchin embryo.

Shepherd GW , Nemer M .


???displayArticle.abstract???
The frequency distributions of polyadenylylated RNAs from the polysomes of sea urchin blastulae and gastrulae were estimated from their kinetics of hybridization with complementary DNA. Developmental decreases in complexity were observed among abundant, intermediate, and rare frequency classes. The class of highest abundance in the blastula polysomes had a complexity of 5.6 X 10(4) nucleotides and contained about 30 mRNA species, which divided into subsets according to developmental fate. Studies with purified DNA complementary to this abundant class revealed that five of these mRNA species remained abundant in the gastrula, wherein each comprised 2% of the polyadenylylated RNA in the polysomes. Approximately 5 species decreased to a nearly rare frequency and 20 were absent or at the limits of detection in polyadenylylated RNA of gastrula polysomes. These distinctly different developmental fates suggest distinct modes of regulation of mRNA concentration for different subsets. Focusing on the small number of abundant blastula mRNAs, we ascertained that those which were absent from gastrula polysomes were nevertheless represented in the gastrula nuclear RNA. Therefore, the appearance of abundant mRNA species in polysomes can be regulated by posttranscriptional processes.

???displayArticle.pubmedLink??? 6933514
???displayArticle.pmcLink??? PMC349903
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]

Genes referenced: LOC100887844

References [+] :
Affara, Regulation of a group of abundant mRNA sequences during Friend cell differentiation. 1979, Pubmed