Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49758
Sci Total Environ 2020 Nov 01;741:140415. doi: 10.1016/j.scitotenv.2020.140415.
Show Gene links Show Anatomy links

Sulfidation of sea urchin-like zinc oxide nanospheres: Kinetics, mechanisms, and impacts on growth of Escherichia coli.

Qian X , Gu Z , Tang Q , Hong A , Filser J , Sharma VK , Li L .


Abstract
Nanoscale zinc oxide (n-ZnO) with different morphology and sizes has been used in personal care products due to their antibacterial properties, resulting in discharge of n-ZnO into the environment with potential toxic effect to ecological systems. Sulfidation is one of pathways of transformation of n-ZnO, but a very limited information on the conversion of n-ZnO under sulfidic environment with special morphology such as sea urchin-like zinc oxide nanospheres (ZnO-NSs) is available to know the potential environmental risks of n-ZnO. Herein, sea urchin-like ZnO-NSs with an average size of 78 nm were synthesized and adopted as the model n-ZnO of special morphology. The ZnO-NPs at average sizes of 71 nm (ZnO-NPs-71), 48 nm (ZnO-NPs-48), and 17 nm (ZnO-NPs-17) nm were used to examine possible differences in the sulfidation between the sea urchin-like ZnO-NSs and ZnO-NPs. A new analytical method selectively dissolving ZnO over ZnS in partially sulfidized n-ZnO was developed and applied to understand the kinetics of n-ZnO sulfidation. The sulfidation rate constant (ks) of sea urchin-like ZnO-NSs was 2.9 × 10-3 h-1, comparable to that of ZnO-NPs-71 (4.1 × 10-3 h-1), but much lower than those of ZnO-NPs-48 (20.1 × 10-3 h-1) and ZnO-NPs-17 (67.8 × 10-3 h-1). This might be attributed to the differences in the specific surface area; ks positively correlated with the specific surface area (R2 = 0.97). Natural organic matter (NOM) decreased dissolution and sulfidation of the sea urchin-like ZnO-NSs. Aggregate ZnS nanocrystals instead of the original sea urchin-like ZnO-NSs were observed. We proposed that sea urchin-like ZnO-NSs were transformed to ZnS through a dissolution-precipitation pathway, consistent with the sulfidation pathway of ZnO-NPs. Sulfidation drastically reduced toxicity of sea urchin-like ZnO-NSs to Escherichia coli due to negligible dissolution of ZnS nanocrystals. These results greatly improved our understanding of the transformation and potential risks of n-ZnO with special morphology.

PubMed ID: 32599405
Article link: Sci Total Environ