Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46687
ACS Omega 2018 Sep 30;39:11823-11830. doi: 10.1021/acsomega.8b01697.
Show Gene links Show Anatomy links

Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation.

Pendola M , Jain G , Huang YC , Gebauer D , Evans JS .


???displayArticle.abstract???
The formation of the sea urchin spicule involves the stabilization and transformation of amorphous calcium carbonate (ACC) and assembly of ACC nanoparticle precursors into a mesoscale single crystal of fracture-resistant calcite. This process of particle assembly or attachment is under the control of a family of proteins known as the spicule matrix [Strongylocentrotus purpuratus (SpSM)] proteome. Recently, two members of this proteome, SpSM50 and the glycoprotein SpSM30B/C-G (in recombinant forms), were found to interact together via SpSM30B/C-G oligosaccharide-SpSM50 protein interactions to form hybrid protein hydrogels with unique physical properties. In this study, we investigate the mineralization properties of this hybrid hydrogel alongside the hydrogels formed by SpSM50 and SpSM30B/C-G individually. We find that the SpSM50 + SpSM30B/C-G hybrid hydrogel is synergistic with regard to surface modifications and intracrystalline inclusions of existing calcite crystals, the inhibition of ACC formation, and the kinetic destabilization of ACC to form a crystalline phase. Most importantly, the hybrid hydrogel phase assembles and organizes mineral particles into discrete clusters or domains within in vitro mineralization environments. Thus, the interactions of SpSM50 and SpSM30B/C-G, mediated by carbohydrate-protein binding, reflect the need for protein cooperativity for the ACC-to-crystalline transformation, intracrystalline void formation, and guided mineral particle assembly processes that are instrumental in spicule formation.

???displayArticle.pubmedLink??? 30320276
???displayArticle.pmcLink??? PMC6173553
???displayArticle.link??? ACS Omega


Genes referenced: LOC100887844 LOC590371


???attribute.lit??? ???displayArticles.show???
References [+] :
Berman, Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. 1990, Pubmed, Echinobase