Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46148
FEMS Microbiol Ecol 2018 Apr 01;944:. doi: 10.1093/femsec/fiy030.
Show Gene links Show Anatomy links

A member of the Roseobacter clade, Octadecabacter sp., is the dominant symbiont in the brittle star Amphipholis squamata.

Morrow KM , Tedford AR , Pankey MS , Lesser MP .


???displayArticle.abstract???
Symbiotic associations with subcuticular bacteria (SCB) have been identified and studied in many echinoderms, including the SCB of the brooding brittle star, Amphipholis squamata. Previous studies on the SCB of A. squamata placed the isolated bacterium, designated as AS1, in the genus Vibrio (Gammaproteobacteria), but subsequent studies suggested that the SCB of echinoderms belong to the Alphaproteobacteria. This study examines the taxonomic composition of SCB associated with A. squamata from the Northwest Atlantic using the 16S rRNA gene and next generation sequencing. Results show the presence of a single dominant bacterial type, within the Roseobacter clade, family Rhodobacteraceae, which composes 70%-80% of the A. squamata microbiome. These Rhodobacteraceae sequences were identified as members of the genus Octadecabacter. Additionally, the original isolate, AS1, from the brittle star A. squamata also belongs in the genus Octadecabacter based on Sanger sequencing of cloned 16S rRNA gene sequences. By comparison, adjacent seawater and sediment porewater communities were significantly more diverse, hosting bacteria in the phyla Proteobacteria, Bacteroidetes, Cyanobacteria, Verrucomicrobia and Actinobacteria. Thus, a distinct SCB community is present in A. squamata that is dominated by a member of the genus Octadecabacter and is identical to the original isolate, AS1, from this brittle star.

???displayArticle.pubmedLink??? 29471328
???displayArticle.link??? FEMS Microbiol Ecol