Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-37255
Acta Histochem 1999 Jul 01;1013:293-303. doi: 10.1016/S0065-1281(99)80030-0.
Show Gene links Show Anatomy links

A putative role for carbohydrates in sea urchin gastrulation.

Latham VH , Tully MJ , Oppenheimer SB .


???displayArticle.abstract???
Many studies have examined the effects of lectins on embryonic development. Recently, it has been shown that lectins actually enter the blastocoel of sea urchin embryos without microinjection and bind to specific cell types. The present study was performed to examine the effects of lectins on sea urchin gastrulation. Strongylocentrotus purpuratus sea urchin embryos were incubated with several lectins at concentrations from 0.01 microgram/ml to 100 micrograms/ml at 15-28 h in the presence or absence of the preferential binding sugars. The most interesting findings were that the mannose specific lectins Lens culinaris agglutinin (LcH) which binds to secondary mesenchyme cells involved in archenteron anchoring and Pisum sativum (PSA) caused exogastrulation. Wheat germ agglutinin (WGA) which binds to primary mesenchyme cells involved in skeletogenesis caused defective skeletogenesis. Our findings suggest that D-mannose-like residues (LcH and PSA specific sugar) may function in archenteron development and anchoring, while N-acetyl-D-glucosamine-like groups (WGA specific sugar) may contribute to control of primary mesenchyme positioning and function. Specific carbohydrate-containing receptors may, therefore, be of importance in specific gastrulation events.

???displayArticle.pubmedLink??? 10443292
???displayArticle.link??? Acta Histochem


Genes referenced: LOC100887844 LOC100889101 LOC115919910