Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-52070
Dev Growth Differ 1979 Jan 01;214:331-342. doi: 10.1111/j.1440-169X.1979.00331.x.
Show Gene links Show Anatomy links

EFFECTS OF THE SURFACTANTS ON THE CLEAVAGE AND FURTHER DEVELOPMENT OF THE SEA URCHIN EMBRYOS II. DISTURBANCE IN THE ARRANGEMENT OF CORTICAL VESICLES AND CHANGE IN CORTICAL APPEARANCE.

Tanaka Y .


Abstract
After fertilization, two types of cortical vesicles ware examined under the electron microscope (the cortical vesicle I and II) and the light microscope (pigment granules and another kind of vesicles). The cortical vesicle I corresponds to the pigment granule and the cortical vesicle II does to the other vesicle. The unequal division of the sea urchin embryo which occurs at the fourth cleavage was modified to an equal cleavage pattern by the treatment with sodium lauryl sulfate (SLS) or cetyl trimethyl ammonium bromide (CTAB). But other surfactants such as sodium deoxycholate, Tween 80, Lubrol PX did not have such an effect. The cell surface of the embryo which had been treated either SLS or CTAB became rough or smooth. Cortical vesicles and pigment granules disappeared and/or were dislocated from the cortex. However, cell organelles were as normal as the control. On the other hand, the cortical appearance of other surfactant-treated embryos showed no disturbance and cell organelles were also more or less normal. Therefore, the equalization of unequal cleavage is caused by the disturbance in the cortex and thus the cortex plays a major role on the micromere formation at the 16-cell stage and on the further sea urchin development.

PubMed ID: 37281464
Article link: Dev Growth Differ