Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Cell Signal 2022 Apr 01;92:110264. doi: 10.1016/j.cellsig.2022.110264.
Show Gene links Show Anatomy links

EML4-ALK G1202R mutation induces EMT and confers resistance to ceritinib in NSCLC cells via activation of STAT3/Slug signaling.

Shen J , Meng Y , Wang K , Gao M , Du J , Wang J , Li Z , Zuo D , Wu Y .

The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene occurs in approximately 5% of non-small-cell lung cancers (NSCLCs). The development of ALK tyrosine kinase inhibitors (ALK-TKIs) is a major advance in treating NSCLC with the ALK fusion gene. Nevertheless, acquired resistance to ALK-TKIs ultimately limits their use. A prevalent mechanism of drug resistance in kinases occurs through the mutation of G1202R in ALK. However, the mechanisms underlying G1202R resistance to ceritinib are not fully understood. Here, we demonstrated that the expression of EML4-ALK G1202R mutation in A549 cells induced an epithelial-mesenchymal transition (EMT) phenotype and significantly increased the migration and invasion abilities. These phenomena may be due to the upregulation of signal transducer and activator of transcription 3 (STAT3), accompanied by the elevated expression of Slug in EML4-ALK G1202R mutant cells. Furthermore, the combination of ALK and STAT3 inhibitors restored the sensitivity of EML4-ALK G1202R mutant cells to ceritinib. In conclusion, these data indicate that the EML4-ALK G1202R mutation mediates the EMT phenotype by activating the STAT3/Slug signaling pathway, resulting in resistance to ceritinib, and that the combination of STAT3 and ALK inhibitors may overcome ALK mutation-driven drug resistance in the clinic.

PubMed ID: 35085771
Article link: Cell Signal