ECB-ART-47940
Biochim Biophys Acta
2013 Apr 01;18304:3054-66. doi: 10.1016/j.bbagen.2013.01.001.
Show Gene links
Show Anatomy links
Sulfation pattern of the fucose branch is important for the anticoagulant and antithrombotic activities of fucosylated chondroitin sulfates.
Abstract
BACKGROUND: The aim is to compare the structures, anticoagulant and antithrombotic activities of two fucosylated chondroitin sulfates isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg), which were known to have different sulfation patterns on the fucose branches. METHODS: The structures of fCSs were identified using 2D NMR. Anticoagulant activities were measured by activated partial thromboplastin time (APTT) and thrombin time (TT), and inhibition of factors IIa, Xa and XIIa was assessed in vitro. Antithrombotic activity was determined ex vivo by measuring the length and weight of the thrombus generated. RESULTS: The two fCSs had identical chondroitin sulfate E backbones and similar fucose branches, but different sulfation patterns of the fucose branches. The fucose branch in fCS-Ib was mainly 2,4-O-sulfated whereas that in fCS-Pg was mainly 3,4-O-sulfated. In vitro assay indicated that fCS-Pg possessed much lower potency than fCS-Ib in prolonging APTT/TT and in inhibition of thrombin. However, they both exhibited similar inhibitory effects on factor X activation by intrinsic tenase complex, and on thrombus generation. Furthermore, both fCSs significantly activated factor XII, which has been proved to be associated with adverse clinical events associated with heparin contaminated by oversulfated chondroitin sulfate. CONCLUSION: The 2,4-O-sulfated fucose branch is the key structural factor of fCSs for prolonged APTT/TT and inhibition of thrombin, whereas the inhibitory effect of fCSs on factor X, XII activation and thrombus generation was attributed to the overall structure of fCS polysaccharide. GENERAL IMPORTANCE: Both fCSs have well defined structures and can be readily quality-controlled, and therefore may be potential alternatives for heparin as anticoagulant and antithrombotic drugs.
PubMed ID: 23313164
Article link: Biochim Biophys Acta
Genes referenced: LOC100887844