Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Ecology 2012 Apr 01;934:868-78. doi: 10.1890/10-1785.1.
Show Gene links Show Anatomy links

Influence of a dominant consumer species reverses at increased diversity.

Brandt M , Witman JD , Chiriboga AI .

Theory and experiments indicate that changes in consumer diversity affect benthic community structure and ecosystem functioning. Although the effects of consumer diversity have been tested in the laboratory and the field, little is known about effects of consumer diversity in the subtidal zone, one of the largest marine habitats. We investigated the grazing effects of sea urchins on algal abundance and benthic community structure in a natural subtidal habitat of the Galápagos Islands. Three species of urchins (Eucidaris, Lytechinus, and Tripneustes) were manipulated in inclusion cages following a replacement design with three levels of species richness (one, two, and three species) with all possible two-species urchin combinations. Identity was the main factor accounting for changes in the percentage of substrate grazed and benthic community structure. Two out of the three two-species assemblages grazed more than expected, suggesting a richness effect, but analyses revealed that this increased grazing was due to a sampling effect of the largest and commercially valued urchin species, Tripneustes. Benthic community structure in treatments with Eucidaris, Lytechinus, and Tripneustes alone was significantly different at the end of the experiment, suggesting that resource use differentiation occurred. Communities in Tripneustes enclosures were characterized by abundant crustose coralline algae and grazed substrate, while those without it contained abundant green foliose algae (Ulva sp.). An unexpected emergent property of the system was that the most species-rich urchin assemblage underyielded, grazing less than any other assemblage with Tripneustes, effectively reversing its dominant influence observed in the two-species treatments. While further experiments are needed to discern the mechanisms of underyielding, it may be related to changing interspecific interactions as richness increases from two to three species or to density-dependent Tripneustes grazing. This study highlights the general importance of evaluating consumer richness effects across the entire range of species richness considered, as the performance of the most species-rich consumer assemblage could not be predicted by manipulations of intermediate levels of consumer species richness.

PubMed ID: 22690637
Article link: Ecology

Genes referenced: LOC100887844