Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
FEBS Open Bio
2020 Aug 01;108:1587-1600. doi: 10.1002/2211-5463.12914.
Show Gene links
Show Anatomy links
Comparison of the complete mitochondrial genome of Phyllophorus liuwutiensis (Echinodermata: Holothuroidea: Phyllophoridae) to that of other sea cucumbers.
Yang F
,
Zhou C
,
Tran NT
,
Sun Z
,
Wu J
,
Ge H
,
Lu Z
,
Zhong C
,
Zhu Z
,
Yang Q
,
Lin Q
.
Abstract
Sea cucumber species are abundant (>1400 species) and widely distributed globally. mtDNA sequencing is frequently used to identify the phylogenetic and evolutionary relationships among species. However, there are no reports on the mitochondrial genome of Phyllophorus liuwutiensis. Here, we performed mtDNA sequencing of P. liuwutiensis to examine its phylogenetic relationships with other echinoderms. Its mitochondrial genome (15 969 bp) contains 37 coding genes, including 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes. Except for one protein-coding gene (nad6) and five tRNA genes encoded on the negative strand, all other genes were encoded on the positive strand. The mitochondrial bases of P. liuwutiensis were composed of 29.55% T, 22.16% C, 35.64% A and 12.64% G. The putative control region was 703 bp in length. Seven overlapping regions (1-10 bp) were found. The noncoding region between the genes ranged from 1 to 130 bp in length. One putative control region has been found in the P. liuwutiensis mitogenome. All of the tRNA genes were predicted to fold into a cloverleaf structure. In addition, we compared the gene arrangements of six echinoderms, revealing that the gene order of P. liuwutiensis was a new arrangement.
Fig. 1. The dorsal wall of the P. liuwutiensis. Tabular form (A), plates of sea cucumber (B), type rosettes (C) and type buttons (D). Scale bars: 10 μm (A, C, D); 50 μm (B).
Fig. 2. Gene map of the complete mitochondrial genome of P. liuwutiensis. Genes encoded on the positive and negative strands are shown outside and inside the circular gene map, respectively.
Fig. 3. RSCU in P. liuwutiensis mitogenome.
Fig. 4. Secondary structures of the 22 tRNA genes of P. liuwutiensis.
Fig. 5. Phylogenetic trees based on the concatenated amino acid of 13 PCGs. The Balanoglossus carnosus (NC001887.1) is used as outgroup. The red name highlights the species sequenced in this study. P. liuwutiensis (MN198190), Amphiura digitula (MH791160.1), Apostichopus japonicus (FJ986223.1), P. nigripunctatus (AB525762.1), Parastichopus parvimensis (KU168761.1), Parastichopus californicus (KP398509.1), Stichopus sp. SFâ2010 (HM853683.2), Stichopus horrens (HQ000092.1), Holothuria scabra (KP257577.1), Holothuria forskali (FN562582.1), Cucumaria miniata (AY182376.1), Benthodytes marianensis (MH208310.1), Freyastera benthophila (MG563681.1), Astropecten polyacanthus (AB183560.1), Acanthaster planci (AB231475.1), Echinaster brasiliensis (MG636999.1), Heliocidaris crassispina (KC479025.1), Heterocentrotus mammillatus (KJ680292.1), Strongylocentrotus droebachiensis (EU054306.1), Hemicentrotus pulcherrimus (KC490911.1), Florometra serratissima (NC001878.1), Phanogenia gracilis (DQ068952.1), Ophiura lutkeni (AY184223.1), Peniagone sp. YYHâ2013 (KF915304.1), Amphipholis squamata (FN562578.1) and Astrospartus mediterraneus (NC013878.1).
Fig. 6. Linear representation of gene rearrangements of P. liuwutiensis, Apostichopus japonicus, Florometra serratissima, Strongylocentrotus droebachiensis, Ophiura lutkeni, Acanthaster planci, Cucumaria miniata and Benthodytes marianensis. Gene segments are not drawn to scale. All genes are transcribed from left to right except those indicated by underlining, which are transcribed from right to left. The circling arrows indicate inversions. tRNA genes are represented by the corresponding singleâletter amino acid code, especially S1 (AGN), S2 (UCN), L1 (CUN) and L2 (UUR). rrnL and rrnS are the large and small rRNA subunits, respectively.
Arndt,
Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria.
1998, Pubmed,
Echinobase
Arndt,
Mitochondrial gene rearrangement in the sea cucumber genus Cucumaria.
1998,
Pubmed
,
Echinobase
Arndt,
Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence.
1996,
Pubmed
,
Echinobase
Bernt,
MITOS: improved de novo metazoan mitochondrial genome annotation.
2013,
Pubmed
Boore,
Animal mitochondrial genomes.
1999,
Pubmed
Bordbar,
High-value components and bioactives from sea cucumbers for functional foods--a review.
2011,
Pubmed
,
Echinobase
Bronstein,
The first mitochondrial genome of the model echinoid Lytechinus variegatus and insights into Odontophoran phylogenetics.
2019,
Pubmed
,
Echinobase
Burland,
DNASTAR's Lasergene sequence analysis software.
2000,
Pubmed
Červená,
Low diversity of Angiostrongylus cantonensis complete mitochondrial DNA sequences from Australia, Hawaii, French Polynesia and the Canary Islands revealed using whole genome next-generation sequencing.
2019,
Pubmed
Fan,
Characterization of mitochondrial genome of sea cucumber Stichopus horrens: a novel gene arrangement in Holothuroidea.
2011,
Pubmed
,
Echinobase
Ivey,
The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae).
2007,
Pubmed
Kilpert,
The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features.
2006,
Pubmed
Kumar,
MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.
2004,
Pubmed
Kumazawa,
Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster.
1996,
Pubmed
Laslett,
ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences.
2008,
Pubmed
Lei,
Complete sequence and gene organization of the mitochondrial genome for Hubbard's sportive lemur (Lepilemur hubbardorum).
2010,
Pubmed
Li,
The complete mitochondrial DNA of three monozoic tapeworms in the Caryophyllidea: a mitogenomic perspective on the phylogeny of eucestodes.
2017,
Pubmed
Mu,
Complete mitochondrial genome of Benthodytes marianensis (Holothuroidea: Elasipodida: Psychropotidae): Insight into deep sea adaptation in the sea cucumber.
2018,
Pubmed
,
Echinobase
Perna,
Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes.
1995,
Pubmed
Perseke,
Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata.
2010,
Pubmed
,
Echinobase
Ronquist,
MrBayes 3: Bayesian phylogenetic inference under mixed models.
2003,
Pubmed
Scouras,
A novel mitochondrial gene order in the crinoid echinoderm Florometra serratissima.
2001,
Pubmed
,
Echinobase
Scouras,
Complete mitochondrial genome DNA sequence for two ophiuroids and a holothuroid: the utility of protein gene sequence and gene maps in the analyses of deep deuterostome phylogeny.
2004,
Pubmed
,
Echinobase
Shen,
Complete mitochondrial genome of the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea): the first representative from the subclass Aspidochirotacea with the echinoderm ground pattern.
2009,
Pubmed
,
Echinobase
Shen,
Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships.
2013,
Pubmed
Steel,
Phylogenetic diversity and the greedy algorithm.
2005,
Pubmed
Takezaki,
Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences.
1999,
Pubmed
,
Echinobase
Tang,
The complete mitochondrial genome of Sesarmops sinensis reveals gene rearrangements and phylogenetic relationships in Brachyura.
2017,
Pubmed
Uthicke,
Genetic barcoding of commercial Bêche-de-mer species (Echinodermata: Holothuroidea).
2010,
Pubmed
,
Echinobase
Utzeri,
Microscopic ossicle analyses and the complete mitochondrial genome sequence of Holothuria (Roweothuria) polii (Echinodermata; Holothuroidea) provide new information to support the phylogenetic positioning of this sea cucumber species.
2020,
Pubmed
,
Echinobase
Wang,
Complete mitochondrial genome of Parasesarma affine (Brachyura: Sesarmidae): Gene rearrangements in Sesarmidae and phylogenetic analysis of the Brachyura.
2018,
Pubmed
Wang,
The complete mitochondrial genome of Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) and comparison with other Brachyuran crabs.
2019,
Pubmed
Wyman,
Automatic annotation of organellar genomes with DOGMA.
2004,
Pubmed
Yan,
The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions.
2012,
Pubmed
Zhang,
Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements.
2018,
Pubmed
Zhang,
Three new Diplozoidae mitogenomes expose unusual compositional biases within the Monogenea class: implications for phylogenetic studies.
2018,
Pubmed
Zhang,
Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda.
2019,
Pubmed
Zou,
The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class.
2017,
Pubmed