Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32330
Eur J Biochem 1987 Aug 17;1671:135-40. doi: 10.1111/j.1432-1033.1987.tb13314.x.
Show Gene links Show Anatomy links

Identification of protein phosphatases-1 and 2A and inhibitor-2 in oocytes of the starfish Asterias rubens and Marthasterias glacialis.

Pondaven P , Cohen P .


???displayArticle.abstract???
Protein phosphatases present in the particulate and soluble fractions of oocytes of the starfish Asterias rubens and Marthasterias glacialis have been classified according to the criteria used for these enzymes from mammalian cells. The major protein phosphatase activity in the particulate fraction had very similar properties to protein phosphatase-1 from mammalian tissues, including preferential dephosphorylation of the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition of phosphorylase phosphatase activity by protamine and heparin, and retention by heparin-Sepharose. The major protein phosphatase in the soluble fraction had very similar properties to mammalian protein phosphatase-2A, including preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and 2, activation by protamine and heparin, and exclusion from heparin-Sepharose. An acid-stable and heat-stable protein was detected in the soluble fraction of starfish oocytes, whose properties were indistinguishable from those of inhibitor-2 from mammalian tissues. It inhibited protein phosphatase-1 specifically, and its apparent molecular mass on SDS polyacrylamide gels was 31 kDa. Furthermore, an inactive hybrid formed between the starfish oocyte inhibitor and the catalytic subunit of mammalian protein phosphatase-1 could be reactivated by preincubation with MgATP and mammalian glycogen synthase kinase-3. The remarkable similarities between starfish oocyte protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation of these enzymes. The results will facilitate further analysis of the role of protein phosphorylation in the control of starfish oocyte maturation by the hormone 1-methyladenine.

???displayArticle.pubmedLink??? 3040398
???displayArticle.link??? Eur J Biochem


Genes referenced: LOC578305 LOC594261 phkb ppp2cb