Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-42845
J Exp Biol 2013 May 01;216Pt 9:1717-25. doi: 10.1242/jeb.078964.
Show Gene links Show Anatomy links

Intertidal sea stars (Pisaster ochraceus) alter body shape in response to wave action.

Hayne KJ , Palmer AR .


???displayArticle.abstract???
Sea stars are some of the largest mobile animals able to live in the harsh flow environment of wave-exposed, rocky intertidal shores. In addition, some species, such as the northeastern Pacific Pisaster ochraceus, are ecologically significant predators in a broad range of environments, from sheltered lagoons to the most wave-exposed shorelines. How they function and survive under such an extreme range of wave exposures remains a puzzle. Here we examine the ability of P. ochraceus to alter body form in response to variation in flow conditions. We found that sea stars in wave-exposed sites had narrower arms and were lighter per unit arm length than those from sheltered sites. Body form was tightly correlated with maximum velocity of breaking waves across four sites and also varied over time. In addition, field transplant experiments showed that these differences in shape were due primarily to phenotypic plasticity. Sea stars transplanted from a sheltered site to a more wave-exposed site became lighter per unit arm length, and developed narrower arms, after 3 months. The tight correlation between water flow and morphology suggests that wave force must be a significant selective factor acting on body shape. On exposed shores, narrower arms probably reduce both lift and drag in breaking waves. On protected shores, fatter arms may provide more thermal inertia to resist overheating, or more body volume for gametes. Such plastic changes in body shape represent a unique method by which sea stars adapt to spatial, seasonal and possibly short-term variation in flow conditions.

???displayArticle.pubmedLink??? 23596283
???displayArticle.link??? J Exp Biol


Genes referenced: LOC100887844