Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Dev Biol
2013 Oct 01;3821:268-79. doi: 10.1016/j.ydbio.2013.07.027.
Show Gene links
Show Anatomy links
New regulatory circuit controlling spatial and temporal gene expression in the sea urchin embryo oral ectodermGRN.
Li E
,
Materna SC
,
Davidson EH
.
???displayArticle.abstract???
The sea urchin oral ectoderm gene regulatory network (GRN) model has increased in complexity as additional genes are added to it, revealing its multiple spatial regulatory state domains. The formation of the oral ectoderm begins with an oral-aboral redox gradient, which is interpreted by the cis-regulatory system of the nodal gene to cause its expression on the oral side of the embryo. Nodal signaling drives cohorts of regulatory genes within the oral ectoderm and its derived subdomains. Activation of these genes occurs sequentially, spanning the entire blastula stage. During this process the stomodeal subdomain emerges inside of the oral ectoderm, and bilateral subdomains defining the lateral portions of the future ciliary band emerge adjacent to the central oral ectoderm. Here we examine two regulatory genes encoding repressors, sip1 and ets4, which selectively prevent transcription of oral ectoderm genes until their expression is cleared from the oral ectoderm as an indirect consequence of Nodal signaling. We show that the timing of transcriptional de-repression of sip1 and ets4 targets which occurs upon their clearance explains the dynamics of oral ectoderm gene expression. In addition two other repressors, the direct Nodal target not, and the feed forward Nodal target goosecoid, repress expression of regulatory genes in the central animal oral ectoderm thereby confining their expression to the lateral domains of the animal ectoderm. These results have permitted construction of an enhanced animal ectodermGRN model highlighting the repressive interactions providing precise temporal and spatial control of regulatory gene expression.
Ben-Tabou de-Leon,
Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
2013, Pubmed,
Echinobase
Ben-Tabou de-Leon,
Gene regulatory control in the sea urchin aboral ectoderm: spatial initiation, signaling inputs, and cell fate lockdown.
2013,
Pubmed
,
Echinobase
Bolouri,
The gene regulatory network basis of the "community effect," and analysis of a sea urchin embryo example.
2010,
Pubmed
,
Echinobase
Bolouri,
Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics.
2003,
Pubmed
,
Echinobase
Cameron,
Lineage and fate of each blastomere of the eight-cell sea urchin embryo.
1987,
Pubmed
,
Echinobase
Chuang,
Transient appearance of Strongylocentrotus purpuratus Otx in micromere nuclei: cytoplasmic retention of SpOtx possibly mediated through an alpha-actinin interaction.
1996,
Pubmed
,
Echinobase
Coffman,
Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.
2009,
Pubmed
,
Echinobase
Coffman,
Oral-aboral axis specification in the sea urchin embryo. I. Axis entrainment by respiratory asymmetry.
2001,
Pubmed
,
Echinobase
Coffman,
Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
2004,
Pubmed
,
Echinobase
Croce,
Expression pattern of Brachyury in the embryo of the sea urchin Paracentrotus lividus.
2001,
Pubmed
,
Echinobase
Damle,
Precise cis-regulatory control of spatial and temporal expression of the alx-1 gene in the skeletogenic lineage of s. purpuratus.
2011,
Pubmed
,
Echinobase
Duboc,
Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
2004,
Pubmed
,
Echinobase
Howard-Ashby,
Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development.
2006,
Pubmed
,
Echinobase
Kenny,
Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
2003,
Pubmed
,
Echinobase
Li,
Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.
2012,
Pubmed
,
Echinobase
Materna,
The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.
2006,
Pubmed
,
Echinobase
Materna,
High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development.
2010,
Pubmed
,
Echinobase
Materna,
Diversification of oral and aboral mesodermal regulatory states in pregastrular sea urchin embryos.
2013,
Pubmed
,
Echinobase
Nam,
Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network.
2007,
Pubmed
,
Echinobase
Nam,
Functional cis-regulatory genomics for systems biology.
2010,
Pubmed
,
Echinobase
Oliveri,
Global regulatory logic for specification of an embryonic cell lineage.
2008,
Pubmed
,
Echinobase
Peter,
Modularity and design principles in the sea urchin embryo gene regulatory network.
2009,
Pubmed
,
Echinobase
Peter,
The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
2010,
Pubmed
,
Echinobase
Peter,
A gene regulatory network controlling the embryonic specification of endoderm.
2011,
Pubmed
,
Echinobase
Peter,
Predictive computation of genomic logic processing functions in embryonic development.
2012,
Pubmed
,
Echinobase
Range,
Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
2007,
Pubmed
,
Echinobase
Ransick,
Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
1993,
Pubmed
,
Echinobase
Rizzo,
Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
2006,
Pubmed
,
Echinobase
Saudemont,
Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
2010,
Pubmed
,
Echinobase
Smith,
A gene regulatory network subcircuit drives a dynamic pattern of gene expression.
2007,
Pubmed
,
Echinobase
Su,
A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo.
2009,
Pubmed
,
Echinobase
Wei,
Identification of a new sea urchin ets protein, SpEts4, by yeast one-hybrid screening with the hatching enzyme promoter.
1999,
Pubmed
,
Echinobase
Wei,
Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis.
1999,
Pubmed
,
Echinobase
Wei,
Characterization of the SpHE promoter that is spatially regulated along the animal-vegetal axis of the sea urchin embryo.
1995,
Pubmed
,
Echinobase
Yaguchi,
Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
2007,
Pubmed
,
Echinobase
Yaguchi,
Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo.
2012,
Pubmed
,
Echinobase
Yuh,
Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements.
2001,
Pubmed
,
Echinobase