Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-38066
Arch Biochem Biophys 2003 May 15;4132:191-8. doi: 10.1016/s0003-9861(03)00111-5.
Show Gene links Show Anatomy links

How do calcium ions induce free radical oxidation of hydroxy-1,4-naphthoquinone? Ca2+ stabilizes the naphthosemiquinone anion-radical of echinochrome A.

Lebedev AV , Ivanova MV , Ruuge EK .


???displayArticle.abstract???
A surprising effect is the direct action of Ca(2+) on redox reactions of ortho-quinoid compounds. The effect of Ca(2+) on oxidation of the sea urchin pigment 6-ethyl-2,3,5,7,8-pentahydroxy-1,4-naphthoquinone (echinochrome A) has been studied by electron paramagnetic resonance (EPR) spectroscopy, by UV/VIS absorbance spectroscopy, and by measurement of oxygen consumption. Echinochrome A per se reacted with dioxygen only in an alkaline solution; 2,3-semiquinone anion-radical of echinochrome A and superoxide anion-radical were the intermediates of the oxidation. Addition of calcium ions sharply increased the rate of echinochrome A autooxidation at alkaline pH and provoked oxidation at neutral pH. To explain this phenomenon we have focused on changes of the acid-base properties of echinochrome A in the presence of calcium and on stabilization of 2,3-semiquinone anion-radical of echinochrome A by Ca(2+). Dissociation constants (pK(a1), pK(a2), and pK(a3)) of echinochrome A determined by potentiometric titration were 5.20, 6.78, and >10 in calcium-free solution and 5.00, 6.10, and 7.15 in the presence of Ca(2+). We have found that Ca(2+) forms an insoluble adduct with the 2,3-semiquinone anion-radical. Thus, the effect of redox-inert calcium on the free radical reactions could be explained (i) by additional deprotonation of echinochrome A and (ii) by formation of a Ca(2+)-naphtho-2,3-semiquinone complex (calcium semiquinonate). Additionally, we have shown that the dried red spines from Strongylocentrotus intermedius possess paramagnetic properties; the EPR signal of the natural spines was similar to that of calcium semiquinonate obtained in our artificial chemical system.

???displayArticle.pubmedLink??? 12729616
???displayArticle.link??? Arch Biochem Biophys


Genes referenced: LOC100887844