Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Dev Biol 1981 Jun 01;842:397-406. doi: 10.1016/0012-1606(81)90408-5.
Show Gene links Show Anatomy links

Studies on the interactions of sperm with the surface of the sea urchin egg.

Glabe C , Buchalter M , Lennarz WJ .

We have examined the relationship between sperm adhesion and fertilization in the cross species insemination of Arbacia punctulata eggs by Strongylocentrotus purpuratus sperm. As previously reported (Kinsey et al., 1980) the addition of S. purpuratus egg jelly results in induction of the acrosome reaction in sperm and significant numbers of S. purpuratus sperm adhere to A. punctulata eggs. However, in the absence of S. purpuratus egg jelly, S. purpuratus sperm fail to bind to A. punctulata eggs. Although at least 200 S. purpuratus sperm bind to an A. punctulata egg in the presence of S. purpuratus jelly, less than 8% of the eggs are fertilized. The adhesion of S. purpuratus sperm meets the same functional criteria as homologous A. punctulata sperm-egg adhesion. Electron microscopy shows that S. purpuratus sperm that have undergone the acrosome reaction adhere to A. punctulata eggs by their bindin-coated acrosomal process in a manner that is morphologically identical to that observed with homologous A. punctulata sperm. We have also compared the ability of S. purpuratus and A. punctulata sperm to fuse and fertilize with A. punctulata eggs after removal of the vitelline layer. Using high levels of sperm of either species, heterologous as well as homologous fertilization is readily detectable. Under these conditions, where stable binding is not demonstrable, there is no difference in the ability of S. purpuratus and A. punctulata sperm to fertilize A. punctulata eggs. These observations suggest that the failure of S. purpuratus sperm to fertilize A. punctulata eggs under normal conditions may be due to their inability to penetrate the vitelline layer so that they can fuse with the egg plasma membrane. In relation to the possible mechanism of vitelline layer penetration, we have also investigated the mode of action of chymostatin, an inhibitor of chymotrypsin that has been reported to inhibit fertilization of sea urchin eggs (Hoshi et al., 1979). Our findings suggest that the fertilization inhibitory activity of chymostatin is not related to its antichymotrypsin activity. Rather, it appears that this inhibition is due to the induction of an abnormal acrosome reaction in sperm that precludes formation of the acrosome process.

PubMed ID: 20737878
Article link: Dev Biol
Grant support: [+]

Genes referenced: bindin LOC100887844