ECB-ART-38826
Biol Bull
2003 Dec 01;2053:261-75. doi: 10.2307/1543290.
Show Gene links
Show Anatomy links
Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications for the behavior of sea cucumbers.
???displayArticle.abstract???
The dermis of the sea cucumber body wall is a typical catch connective tissue that rapidly changes its mechanical properties in response to various stimuli. Dynamic mechanical properties were measured in stiff, standard, and soft states of the sea cucumber Actinopyga mauritiana. Sinusoidal deformations were applied, either at a constant frequency of 0.1 Hz with varying maximum strain of 2%-20% or at a fixed maximum strain of 1.8% with varying frequency of 0.0005-50 Hz. The dermis showed viscoelasticity with both strain and strain-rate dependence. The dermis in the standard state showed a J-shaped stress-strain curve with a stiffness of 1 MPa and a dissipation ratio of 60%; the curve of the stiff dermis was linear with high stiffness (3 MPa) and a low dissipation ratio (30%). Soft dermis showed a J-shaped curve with low stiffness (0.3 MPa) and a high dissipation ratio (80%). The strain-induced softening was observed in the soft state. Stiff samples had a higher storage modulus and a lower tangent delta than soft ones, implying a larger contribution of the elastic component in the stiff state. A simple molecular model was proposed that accounted for the mechanical behavior of the dermis. The model suggested that stiffening stimulation increased inter-molecular bonds, whereas softening stimulation affected intra-molecular bonds. The adaptive significance of each mechanical state in the behavior of sea cucumbers is discussed.
???displayArticle.pubmedLink??? 14672981
???displayArticle.link??? Biol Bull
Genes referenced: LOC100887844 LOC115921237