Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Environ Res 2023 Jul 01;228:115810. doi: 10.1016/j.envres.2023.115810.
Show Gene links Show Anatomy links

Promoting effect of raft-raised scallop culture on the formation of coastal hypoxia.

Sun X , Gao X , Zhao J , Xing Q , Liu Y , Xie L , Wang Y , Wang B , Lv J .

The coastal waters around the Yangma Island are an important mariculture area of raft-raised scallop and bottom-seeded sea cucumber in the North Yellow Sea, China. Large-scale hypoxia in the bottom water of this area has caused the death of a large number of sea cucumbers and heavy economic losses. To find out the formation mechanism of hypoxia, the data obtained in each August during 2015-2018 were analyzed. Compared with the non-hypoxic year (2018), the temperature, trophic index (TRIX) and dissolved organic carbon (DOC) in the bottom water were relatively higher, and the water column was stratified causing by continuous high air temperature and low wind speed meteorological conditions in the hypoxic years (2015-2017). These sites with the coexistence of thermocline and halocline, and the thickness of thermocline >2.5 m and its upper boundary >7.0 m deep, were prone to hypoxia. Spatially, the hypoxic place was highly consistent with the scallop cultivating places, and the DOC, TRIX, NH4+/NO3- and apparent oxygen utilization (AOU) at the culture sites were higher, indicating that organic matter and nutrients released by scallops may lead to local oxygen depletion. In addition, the bottom water of the culture sites had higher salinity, but lower turbidity and temperature, indicating that the slowed water exchange caused by scallop culture was a dynamic factor of hypoxia. All sites with AOU >4 mg/L at the bottom had hypoxia occurrence, even if there was no thermocline. In other words, stratification promoted the formation of hypoxia in coastal bottom water, but it was not indispensable. The raft-raised scallop culture could promote the formation of coastal hypoxia, which should arouse the attention for other coastal areas with intensive bivalve production.

PubMed ID: 37011796
Article link: Environ Res