Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50249
Int J Biol Macromol 2022 Sep 01;216:14-23. doi: 10.1016/j.ijbiomac.2022.06.160.
Show Gene links Show Anatomy links

Structure and hypoglycemic effect of a neutral polysaccharide isolated from sea cucumber Stichopus japonicus.

Gong PX , Wu YC , Liu Y , Lv SZ , You Y , Zhou ZL , Chen X , Li HJ .


Abstract
In addition to its high nutritious value, sea cucumber has been recognized by folk medicine for a long time. This study investigated the structure and hyperglycemic activity of a neutral polysaccharide (NPsj) from sea cucumber Stichopus japonicus, whose molecular weight was determined as 301.75 kDa by HPGPC method. Monosaccharide composition analysis indicated that NPsj is a glucan. The structure of NPsj was obtained by combining the analysis of methylation analysis, FTIR, NMR, periodate oxidation, Smith degradation and ESI-MS, which is mainly composed of (1 → 4)-α-d-glucoses with β-d-glucose(1→) branches substituted at O-6 every 7-9 of 1,4 linked glucoses. An in vitro insulin resistance Hep G2 cells model and a 3 T3-L1 cells model were established, and the NPsj has significant effect to increase glucose consumption with no toxicity at 10-100 μg/mL. Furthermore, NPsj upregulates the phosphorylation of Akt1 and down-regulated GSK3β, and then reduces the phosphorylation of GS, indicating its mechanism of ameliorating insulin resistance via Akt/GSK3β/GS signaling pathway.

PubMed ID: 35780917
Article link: Int J Biol Macromol