Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-40758
Dev Biol 2008 Sep 15;3212:455-69. doi: 10.1016/j.ydbio.2008.06.006.
Show Gene links Show Anatomy links

cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo.

Cavalieri V , Di Bernardo M , Anello L , Spinelli G .


???displayArticle.abstract???
Embryonic development is coordinated by networks of evolutionary conserved regulatory genes encoding transcription factors and components of cell signalling pathways. In the sea urchin embryo, a number of genes encoding transcription factors display territorial restricted expression. Among these, the zygotic Hbox12 homeobox gene is transiently transcribed in a limited number of cells of the animal-lateral half of the early Paracentrotus lividus embryo, whose descendants will constitute part of the ectoderm territory. To obtain insights on the regulation of Hbox12 expression, we have explored the cis-regulatory apparatus of the gene. In this paper, we show that the intergenic region of the tandem Hbox12 repeats drives GFP expression in the presumptive aboral ectoderm and that a 234 bp fragment, defined aboral ectoderm (AE) module, accounts for the restricted expression of the transgene. Within this module, a consensus sequence for a Sox factor and the binding of the Otx activator are both required for correct Hbox12 gene expression. Spatial restriction to the aboral ectoderm is achieved by a combination of different repressive sequence elements. Negative sequence elements necessary for repression in the endomesoderm map within the most upstream 60 bp region and nearby the Sox binding site. Strikingly, a Myb-like consensus is necessary for repression in the oral ectoderm, while down-regulation at the gastrula stage depends on a GA-rich region. These results suggest a role for Hbox12 in aboral ectoderm specification and represent our first attempt in the identification of the gene regulatory circuits involved in this process.

???displayArticle.pubmedLink??? 18585371
???displayArticle.link??? Dev Biol


Genes referenced: LOC100887844 LOC105439014 LOC115919910 mybb mysm1 otx2 pmar1