Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-43085
J Biosci Bioeng 2014 Apr 01;1174:457-63. doi: 10.1016/j.jbiosc.2013.09.005.
Show Gene links Show Anatomy links

Eicosapentaenoic acid-enriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway.

Hu S , Xu L , Shi D , Wang J , Wang Y , Lou Q , Xue C .


???displayArticle.abstract???
Eicosapentaenoic acid-enriched phosphatidylcholine was isolated from the sea cucumber Cucumaria frondosa (Cucumaria-PC) and its effects on streptozotocin (STZ)-induced hyperglycemic rats were investigated. Male Sprague-Dawley rats were randomly divided into normal control, model control (STZ), low- and high-dose Cucumaria-PC groups (STZ + Cucumaria-PC at 25 and 75 mg/Kg·b·wt, intragastrically, respectively). Blood glucose, insulin, glycogen in liver and gastrocnemius were determined over 60 days. Insulin signaling in the rats'' gastrocnemius was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. The results showed that Cucumaria-PC significantly decreased blood glucose level, increased insulin secretion and glycogen synthesis in diabetic rats. RT-PCR analysis revealed that Cucumaria-PC significantly promoted the expressions of glycometabolism-related genes of insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), protein kinase B (PKB), and glucose transporter 4 (GLUT4) in gastrocnemius. Western blotting assay demonstrated that Cucumaria-PC remarkably enhanced the proteins abundance of IR-β, PI3K, PKB, GLUT4, as well as phosphorylation of Tyr-IR-β, p85-PI3K, Ser473-PKB (P < 0.05 and P < 0.01). These findings suggested that Cucumaria-PC exhibited significant anti-hyperglycemic activities through up-regulating PI3K/PKB signal pathway mediated by insulin. Nutritional supplementation with Cucumaria-PC, if validated for human studies, may offer an adjunctive therapy for diabetes mellitus.

???displayArticle.pubmedLink??? 24168893
???displayArticle.link??? J Biosci Bioeng


Genes referenced: LOC100887844 LOC100890677 LOC115922213 LOC115929578 LOC586734 LOC586799 LOC588766 polr3a pus1