Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51679
BMC Genomics 2023 Aug 28;241:491. doi: 10.1186/s12864-023-09616-7.
Show Gene links Show Anatomy links

High temperature influences DNA methylation and transcriptional profiles in sea urchins (Strongylocentrotus intermedius).

Liu A , Zeng F , Wang L , Zhen H , Xia X , Pei H , Dong C , Zhang Y , Ding J .


Abstract
BACKGROUND: DNA methylation plays an important role in life processes by affecting gene expression, but it is still unclear how DNA methylation is controlled and how it regulates gene transcription under high temperature stress conditions in Strongylocentrotus intermedius. The potential link between DNA methylation variation and gene expression changes in response to heat stress in S. intermedius was investigated by MethylRAD-seq and RNA-seq analysis. We screened DNA methylation driver genes in order to comprehensively elucidate the regulatory mechanism of its high temperature adaptation at the DNA/RNA level. RESULTS: The results revealed that high temperature stress significantly affected not only the DNA methylation and transcriptome levels of S. intermedius (Pā€‰<ā€‰0.05), but also growth. MethylRAD-seq analysis revealed 12,129 CG differential methylation sites and 966 CWG differential methylation sites, and identified a total of 189 differentially CG methylated genes and 148 differentially CWG methylated genes. Based on KEGG enrichment analysis, differentially expressed genes (DEGs) are mostly enriched in energy and cell division, immune, and neurological damage pathways. Further RNA-seq analysis identified a total of 1968 DEGs, of which 813 genes were upregulated and 1155 genes were downregulated. Based on the joint MethylRAD-seq and RNA-seq analysis, metabolic processes such as glycosaminoglycan degradation, oxidative phosphorylation, apoptosis, glutathione metabolism, thermogenesis, and lysosomes are regulated by DNA methylation. CONCLUSIONS: High temperature affected the DNA methylation and expression levels of genes such as MOAP-1, GGT1 and RDH8, which in turn affects the metabolism of HPSE, Cox, glutathione, and retinol, thereby suppressing the immune, energy metabolism, and antioxidant functions of the organism and finally manifesting as stunted growth. In summary, the observations in the present study improve our understanding of the molecular mechanism of the response to high temperature stress in sea urchin.

PubMed ID: 37641027
Article link: BMC Genomics
Grant support: [+]