Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-49299
J Exp Zool A Ecol Integr Physiol 2021 Mar 01;3353:367-380. doi: 10.1002/jez.2450.
Show Gene links Show Anatomy links

Identification and characterization of a novel 5-hydroxytryptamine receptor in the sea cucumber Apostichopus japonicus (Selenka).

Zhang B , Yang JW , Han T , Huang DX , Zhao ZH , Feng JQ , Zhou NM , Xie HQ , Wang TM .


Abstract
Serotonin (5-hydroxytryptamine [5-HT]) receptors (5-HTRs) mediate neuroendocrine signaling via interactions with the ligand serotonin (5-HT). The 5-HT signaling system has been well studied in vertebrates, but rarely known in invertebrate animals, especially in the marine invertebrates. In this study, we identified and characterized a novel 5-HTR from the sea cucumber Apostichopus japonicus (Aj5-HT4/6 ). The cloned Aj5-HT4/6 open reading frame comprised 1290 bp and encoded 429 amino acids. Bioinformatic analysis of the receptor indicated that it was a member of the class A of the G protein-coupled receptor family. Further experiments using Aj5-HT4/6 -transfected HEK293 cells demonstrated that treatment with 5-HT could induce rapid internalization of Aj5-HT4/6 fused with enhanced green fluorescent protein from the cell surface into the cytoplasm and triggered a significant increase in levels of the second messenger cAMP as well as mitogen-activated protein kinase phosphorylation in a 5-HT dose-dependent manner. Quantitative real time-polymerase chain reaction demonstrated that Aj5-HT4/6 was predominantly expressed in the muscle and respiratory tree, and its expression was significantly decreased during estivation. Taken together, these results imply that Aj5-HT4/6 is potentially involved in the movement and metabolism of the sea cucumber.

PubMed ID: 33651924
Article link: J Exp Zool A Ecol Integr Physiol