Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-40169
Biol Bull 2007 Apr 01;2122:93-103. doi: 10.2307/25066587.
Show Gene links Show Anatomy links

Time and extent of ciliary response to particles in a non-filtering feeding mechanism.

Strathmann RR .


Abstract
Mechanisms of suspension feeding are usually described by the physics of inanimate filters. High-speed videorecordings in this study demonstrated that sea urchin larvae concentrate particles without filtration. They actively captured individual particles. At most times and places, the effective strokes of the swimming/feeding ciliary band were away from the circumoral field. Cilia of this band responded to particles by a reversal of beat that redirected the particle toward the circumoral field. A change of beat occurred along approximately 80 micro m of ciliary band during particle capture. Cilia responded 0.02 to 0.06 s after the particle was within reach of effective strokes and reversed beat, usually for about 0.1 to 0.2 s. The whole event (disruption of forward beat) generally lasted between 0.13 and 0.5 s. These observations imply reversed movement of a parcel of water much larger than the included captured particle, but particles are nevertheless greatly concentrated because water is directed toward the circumoral field only when and where a particle is sensed. Thus most of the concentration of particles occurs by a temporarily and locally redirected current, without filtration, and size and quality of particles captured depends on sensory capabilities, not the mechanics of filtration.

PubMed ID: 17438202
Article link: Biol Bull


Genes referenced: LOC100887844