Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-30795
J Mol Evol 1976 Dec 31;91:1-23. doi: 10.1007/bf01796119.
Show Gene links Show Anatomy links

Evolutionary divergence and length of repetitive sequences in sea urchin DNA.

Britten RJ , Graham DE , Eden FC , Painchaud DM , Davidson EH .


???displayArticle.abstract???
The organization of repetitive and single copy DNA sequences in sea urchin DNA has been examined with the single strand specific nuclease S1 from Aspergillus. Conditions and levels of enzyme were established so that single strand DNA was effectively digested while reassociated divergent repetitive duplexes remained enzyme resistant. About 25% of sea urchin DNA reassociates with repetitive kinetics to form S1 resistant duplexes of two distinct size classes derived from long and short repetitive sequences in the sea urchin genome. Fragments 2,000 nucleotides long were reassociated to Cot 20 and subjected to controlled digestion with S1 nuclease. About half of the resistant duplexes (13% of the DNA) are short, with a mode size of about 300 nucleotide pairs. This class exhibits significant sequence divergence, and principally consists of repetitive sequences which were interspersed with single copy sequences. About one-third of the long duplexes (4% of the DNA) are reduced in size after extensive S1 nuclease digestion to about 300 nucleotide pairs. About two-thirds of the long resistant duplexes (8% of the DNA) remains long after extensive SI nuclease digestion. These long reassociated duplexes are precisely base paired. The short duplexes are imprecisely paired with a melting temperature about 9 degrees C below that of precisely paired duplexes of the same length. The relationship between length of repetitive duplex and precision of repetition is confirmed by an independent method and has been observed in the DNA of a number of species over a wide phylogenetic area.

???displayArticle.pubmedLink??? 1018329
???displayArticle.link??? J Mol Evol


Genes referenced: LOC100887844 LOC585404

References [+] :
Angerer, DNA sequence organization in the mollusc Aplysia californica. 1975, Pubmed, Echinobase