Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
???displayArticle.abstract???
During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo.
Angerer,
The evolution of nervous system patterning: insights from sea urchin development.
2011, Pubmed,
Echinobase
Angerer,
The evolution of nervous system patterning: insights from sea urchin development.
2011,
Pubmed
,
Echinobase
Barsi,
Geometric control of ciliated band regulatory states in the sea urchin embryo.
2015,
Pubmed
,
Echinobase
Burke,
Sea urchin neural development and the metazoan paradigm of neurogenesis.
2014,
Pubmed
,
Echinobase
Burke,
Neuron-specific expression of a synaptotagmin gene in the sea urchin Strongylocentrotus purpuratus.
2006,
Pubmed
,
Echinobase
Cole,
Fluorescent in situ hybridization reveals multiple expression domains for SpBrn1/2/4 and identifies a unique ectodermal cell type that co-expresses the ParaHox gene SpLox.
2009,
Pubmed
,
Echinobase
Dunn,
Molecular paleoecology: using gene regulatory analysis to address the origins of complex life cycles in the late Precambrian.
2007,
Pubmed
,
Echinobase
Formosa-Jordan,
Lateral inhibition and neurogenesis: novel aspects in motion.
2013,
Pubmed
Garner,
Neurogenesis in sea urchin embryos and the diversity of deuterostome neurogenic mechanisms.
2016,
Pubmed
,
Echinobase
Goding,
Genesis and NEMESIS.
2008,
Pubmed
Hendzel,
Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation.
1997,
Pubmed
Hong,
Sox proteins and neural crest development.
2005,
Pubmed
Lapraz,
Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
2009,
Pubmed
,
Echinobase
Lapraz,
A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms.
2015,
Pubmed
,
Echinobase
Materna,
High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development.
2010,
Pubmed
,
Echinobase
Materna,
The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.
2006,
Pubmed
,
Echinobase
Minokawa,
Expression patterns of four different regulatory genes that function during sea urchin development.
2004,
Pubmed
,
Echinobase
Nakai,
The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse.
1995,
Pubmed
Pang,
Induction of human neuronal cells by defined transcription factors.
2011,
Pubmed
Pfisterer,
Direct conversion of human fibroblasts to dopaminergic neurons.
2011,
Pubmed
Poustka,
A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
2007,
Pubmed
,
Echinobase
Range,
Specification and positioning of the anterior neuroectoderm in deuterostome embryos.
2014,
Pubmed
,
Echinobase
Range,
Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
2013,
Pubmed
,
Echinobase
Reiprich,
From CNS stem cells to neurons and glia: Sox for everyone.
2015,
Pubmed
Ryan,
POU domain family values: flexibility, partnerships, and developmental codes.
1997,
Pubmed
Schonemann,
Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2.
1995,
Pubmed
Sethi,
Multicolor labeling in developmental gene regulatory network analysis.
2014,
Pubmed
,
Echinobase
Vance,
The transcription network regulating melanocyte development and melanoma.
2004,
Pubmed
Vässin,
The neurogenic gene Delta of Drosophila melanogaster is expressed in neurogenic territories and encodes a putative transmembrane protein with EGF-like repeats.
1987,
Pubmed
Wegner,
POU-domain proteins: structure and function of developmental regulators.
1993,
Pubmed
Wei,
A database of mRNA expression patterns for the sea urchin embryo.
2006,
Pubmed
,
Echinobase
Wei,
The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
2009,
Pubmed
,
Echinobase
Wei,
Direct development of neurons within foregut endoderm of sea urchin embryos.
2011,
Pubmed
,
Echinobase
Yaguchi,
Expression of tryptophan 5-hydroxylase gene during sea urchin neurogenesis and role of serotonergic nervous system in larval behavior.
2003,
Pubmed
,
Echinobase
Yaguchi,
A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
2008,
Pubmed
,
Echinobase
Yaguchi,
Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
2006,
Pubmed
,
Echinobase
Yaguchi,
Fez function is required to maintain the size of the animal plate in the sea urchin embryo.
2011,
Pubmed
,
Echinobase
Yaguchi,
Zinc finger homeobox is required for the differentiation of serotonergic neurons in the sea urchin embryo.
2012,
Pubmed
,
Echinobase
Yaguchi,
TGFβ signaling positions the ciliary band and patterns neurons in the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Yang,
Progenitor cell maturation in the developing vertebrate retina.
2009,
Pubmed