Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Oecologia 2020 May 01;1931:199-209. doi: 10.1007/s00442-020-04655-3.
Show Gene links Show Anatomy links

Size-dependent vulnerability to herbivory in a coastal foundation species.

Ng CA , Micheli F .

Ecologists have long wondered how plants and algae persist under constant herbivory, and studies have shown that factors like chemical defense and morphology can protect these species from consumption. However, grazers are also highly diverse and exert varying top-down control over primary producers depending on traits such as body size. Moreover, susceptibility of plants and algae to herbivory may vary across life stages and size classes, with juveniles potentially the most vulnerable. Here, we focus on diverse grazing communities within giant kelp forests and compared consumption on two size classes of juvenile giant kelp (Macrocystis pyrifera) across four herbivore species ranging in size. We also integrated field and literature densities to estimate impacts on populations of juvenile kelp. We found that purple sea urchins, a species known for exerting strong control over adult M. pyrifera, had weak per capita impact on microscopic kelp, on par with a much smaller crustacean species. While urchin consumption increased with macroscopic juvenile kelp, it never surpassed the smaller brown turban snail, suggesting that feeding morphology, in addition to herbivore body size, is a predictor of consumption at these small size classes. The smaller herbivores also occurred in high densities in the field, increasing their predicted population-level impacts on juvenile kelp compared to urchins and perhaps other larger, but less abundant, herbivores. This study highlights the variation in species' roles within an herbivore guild and the importance of age-related changes in grazing vulnerability to better understand herbivore control on plant and algae population dynamics.

PubMed ID: 32306116
Article link: Oecologia
Grant support: [+]