Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-30810
Cell 1975 Nov 01;63:359-69. doi: 10.1016/0092-8674(75)90185-3.
Show Gene links Show Anatomy links

The organization of sea urchin histone genes.

Kedes LH , Cohn RH , Lowry JC , Chang AC , Cohen SN .


???displayArticle.abstract???
Sucrose gradient analysis of total sea urchin DNA cleaved with the EcoRI and Hind III restriction endonucleases and identification of histone coding gene sequences by hybridization with histone mRNA have elucidated the basic organization of the histone gene repeat unit. These data, plus results obtained by electrophoretic analysis of purified endonuclease-cleaved sea urchin histone DNA and hybridization with cRNA transcribed from the eucaryotic segment of constructed plasmid chimeras cloned in E. coli, show that the several DNA sequences coding for individual histone proteins are intermingled in a 7 kilobase (kb) repeat unit. Cleavage of total sea urchin DNA with EcoRI produces 2.2 and 4.8 kb fragments, and which are contained in a 7 kb Hind III fragment. Cleavage with both enzymes reveals that the 2.2 kb EcoRI fragment contains a Hind III site 0.15--0.2 kb from an end. RNA.DNA hybridization between chimeric palsmic DNA and purified individual mRNAs isolated from sea urchin embryo polyribosomes has been used to assign coding sequences to either the 2.2 or 4.8 kb region of the histone DNA repeat unit. A map of the histone genes is proposed.

???displayArticle.pubmedLink??? 1052773
???displayArticle.link??? Cell


Genes referenced: LOC100887844