Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Environ Res 2022 Jul 01;210:112901. doi: 10.1016/j.envres.2022.112901.
Show Gene links Show Anatomy links

Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis.

Chu Y , Zhao Z , Cai L , Zhang G .

As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.

PubMed ID: 35227678
Article link: Environ Res