Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-32993
Dev Biol 1985 Jun 01;1092:489-503. doi: 10.1016/0012-1606(85)90474-9.
Show Gene links Show Anatomy links

Analysis of sea urchin egg cortical transformation in the absence of cortical granule exocytosis.

Fisher GW , Summers RG , Rebhun LI .


???displayArticle.abstract???
A burst of endocytosis accompanying microvillar elongation follows cortical granule exocytosis in normal sea urchin development. By 5 min postfertilization the burst is over and a lower level of endocytosis ensues (constitutive phase). To determine whether microvillar elongation and initiation of endocytosis are necessary concommitants of cortical granule exocytosis we utilized Chase''s (1967, Ph.D. thesis, University of Washington, Seattle) high-hydrostatic pressure technique to block the latter and then examined developing eggs for endocytosis and microvillar elongation. To accomplish this, eggs were fertilized, after which hydrostatic pressure was quickly raised to 6000-7000 psi at the start of cortical granule exocytosis and maintained for 5 min. Only the cortical granules immediately surrounding the sperm penetration site were secreted (about 3% or less of the egg''s total number of cortical granules). Blockage of major cortical granule exocytosis had the following consequences on surface events during first division: (1) The endocytosis burst normally associated with cortical granule exocytosis was effectively eliminated as was early microvillar elongation and elevation. Both occurred to a limited extent around the sperm penetration site which resulted in a highly localized surface transformation. (2) By 20 min after fertilization endocytosis began over the rest of the egg surface in the absence of any further cortical granule exocytosis. (3) Subsequently, during a 30-min period starting midway between fertilization and first cleavage microvilli more than doubled in length and endocytosis levels increased severalfold. These events brought about a complete surface transformation similar to that which normally occurs in early development but in the absence of cortical granule exocytosis. By first cleavage surfaces and cortices of high-pressure-treated and control eggs were nearly indistinguishable except for the presence of cortical granules in cortices of the former. Pressure-treated eggs cleaved normally and developed to larval forms overnight. The period of late surface transformation in high-pressure-treated Strongylocentrotus purpuratus eggs corresponds in timing and some of its characteristics to second phase microvillar elongation observed in normal development in this species and also in S. droebachiensis development. These observations suggest, therefore, that microvillar elongation and endocytosis are necessary membrane remodelling events which must occur for normal development even in the absence of membrane addition from the cortical granules.

???displayArticle.pubmedLink??? 4039691
???displayArticle.link??? Dev Biol


Genes referenced: LOC100887844