ECB-ART-49498
Mol Phylogenet Evol
2021 Feb 01;155:107009. doi: 10.1016/j.ympev.2020.107009.
Show Gene links
Show Anatomy links
Broad distribution, high diversity and ancient origin of the ApeC-containing proteins.
Abstract
Apextrin C-terminal (ApeC) is a novel protein domain with unknown functions, although early studies suggest that some ApeC-containing proteins (ACPs) bind to carbohydrates and have a role in development and immunity. Here we investigated the taxonomic distribution, sequence diversification and origin of ACPs in Metazoa. Most ACPs are present in invertebrates from aquatic or moist environments, including cnidarians, mollusks, echinoderms, cephalochordates, flatworms, water bears, nematodes and annelids. However, ACPs are absent in vertebrates and in most arthropod lineages (e.g. insects and crustaceans) except arachnids. ACPs apparently undergo rapid turnover and diversification, hence no orthologs could be found between (sub)phyla. ApeC can function either as a standalone domain or as a partner domain. It has been found to pair up with over ten different domain types in different ACPs. The partner domains are related to immunity, extracellular matrix, protein-protein and protein-carbohydrate interactions. Notably, the domain pair with the widest taxonomic distribution is MACPF/perforin-ApeC, which represent a classic group of ACPs called apextrins. ApeC also frequently pairs up with itself to form dual-ApeC modules in different phyla. Notably, in parasite flatworms, dual-ApeCs are present in 70% of ACPs and all inherited from a common ancestor. The broad distribution of MACPF-ApeC and dual-ApeC suggest their conserved yet unknown functions. We also discovered distant ApeC homologs in bacteria, hence tracing the origin of ApeC back to prokaryotes. Our findings show that ApeC has an ancient origin and is able to function alone or in complex domain architectures, though it is less prevalent than other versatile domains such as immunoglobulin domains and C-type lectin domains. This work provides a foundation for further functional study of this novel domain type.
PubMed ID: 33186688
Article link: Mol Phylogenet Evol