Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Proc Biol Sci
2012 Aug 07;2791740:3041-8. doi: 10.1098/rspb.2012.0335.
Show Gene links
Show Anatomy links
Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates.
Cameron CB
,
Bishop CD
.
???displayArticle.abstract???
Here, we report the discovery and characterization of biominerals in the acorn worms Saccoglossus bromophenolosus and Ptychodera flava galapagos (Phylum: Hemichordata). Using electron microscopy, X-ray microprobe analyses and confocal Raman spectroscopy, we show that hemichordate biominerals are small CaCO(3) aragonitic elements restricted to specialized epidermal structures, and in S. bromophenolosus, are apparently secreted by sclerocytes. Investigation of urchin biomineralizing proteins in the translated genome and expressed sequence tag (EST) libraries of Saccoglossus kowalevskii indicates that three members of the urchin MSP-130 family, a carbonic anhydrase and a matrix metaloprotease are present and transcribed during the development of S. kowalevskii. The SM family of proteins is absent from the hemichordate genome. These results increase the number of phyla known to biomineralize and suggest that some of the gene-regulatory 'toolkit', if not mineralized tissue themselves, may have been present in the common ancestor to hemichordates and echinoderms.
Aizenberg,
Calcitic microlenses as part of the photoreceptor system in brittlestars.
2001, Pubmed,
Echinobase
Aizenberg,
Calcitic microlenses as part of the photoreceptor system in brittlestars.
2001,
Pubmed
,
Echinobase
Angerer,
Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions.
2003,
Pubmed
,
Echinobase
Berman,
Intercalation of sea urchin proteins in calcite: study of a crystalline composite material.
1990,
Pubmed
,
Echinobase
Bottjer,
Paleogenomics of echinoderms.
2006,
Pubmed
,
Echinobase
Cameron,
Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla.
2000,
Pubmed
Cannon,
Molecular phylogeny of hemichordata, with updated status of deep-sea enteropneusts.
2009,
Pubmed
Ettensohn,
Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis.
2009,
Pubmed
,
Echinobase
Farach-Carson,
A calcium-binding, asparagine-linked oligosaccharide is involved in skeleton formation in the sea urchin embryo.
1989,
Pubmed
,
Echinobase
Guss,
Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues.
1997,
Pubmed
,
Echinobase
Illies,
Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
2002,
Pubmed
,
Echinobase
Ingersoll,
Matrix metalloproteinase inhibitors disrupt spicule formation by primary mesenchyme cells in the sea urchin embryo.
1998,
Pubmed
,
Echinobase
Killian,
Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules.
1996,
Pubmed
,
Echinobase
Leaf,
Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo.
1987,
Pubmed
,
Echinobase
Livingston,
A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus.
2006,
Pubmed
,
Echinobase
Love,
Gene expression patterns in a novel animal appendage: the sea urchin pluteus arm.
2007,
Pubmed
,
Echinobase
Lowe,
Anteroposterior patterning in hemichordates and the origins of the chordate nervous system.
2003,
Pubmed
Mann,
Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix.
2010,
Pubmed
,
Echinobase
Okazaki,
CRYSTAL PROPERTY OF THE LARVAL SEA URCHIN SPICULE.
1976,
Pubmed
,
Echinobase
Tong,
Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process.
2004,
Pubmed
Wilt,
Developmental biology meets materials science: Morphogenesis of biomineralized structures.
2005,
Pubmed
,
Echinobase
Wilt,
Development of calcareous skeletal elements in invertebrates.
2003,
Pubmed