Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Curr Biol 2014 Dec 01;2423:2827-32. doi: 10.1016/j.cub.2014.10.016.
Show Gene links Show Anatomy links

Phylogenomic resolution of the hemichordate and echinoderm clade.

Cannon JT , Kocot KM , Waits DS , Weese DA , Swalla BJ , Santos SR , Halanych KM .

Ambulacraria, comprising Hemichordata and Echinodermata, is closely related to Chordata, making it integral to understanding chordate origins and polarizing chordate molecular and morphological characters. Unfortunately, relationships within Hemichordata and Echinodermata have remained unresolved, compromising our ability to extrapolate findings from the most closely related molecular and developmental models outside of Chordata (e.g., the acorn worms Saccoglossus kowalevskii and Ptychodera flava and the sea urchin Strongylocentrotus purpuratus). To resolve long-standing phylogenetic issues within Ambulacraria, we sequenced transcriptomes for 14 hemichordates as well as 8 echinoderms and complemented these with existing data for a total of 33 ambulacrarian operational taxonomic units (OTUs). Examination of leaf stability values revealed rhabdopleurid pterobranchs and the enteropneust Stereobalanus canadensis were unstable in placement; therefore, analyses were also run without these taxa. Analyses of 185 genes resulted in reciprocal monophyly of Enteropneusta and Pterobranchia, placed the deep-sea family Torquaratoridae within Ptychoderidae, and confirmed the position of ophiuroid brittle stars as sister to asteroid sea stars (the Asterozoa hypothesis). These results are consistent with earlier perspectives concerning plesiomorphies of Ambulacraria, including pharyngeal gill slits, a single axocoel, and paired hydrocoels and somatocoels. The resolved ambulacrarian phylogeny will help clarify the early evolution of chordate characteristics and has implications for our understanding of major fossil groups, including graptolites and somasteroideans.

PubMed ID: 25454590
Article link: Curr Biol

Genes referenced: LOC100887844