Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-50503
Sci Total Environ 2022 Jun 10;824:153768. doi: 10.1016/j.scitotenv.2022.153768.
Show Gene links Show Anatomy links

Sewage sludge ash-based mortar as construction material: Mechanical studies, macrofouling, and marine toxicity.

Prabhakar AK , Krishnan P , Lee SS , Lim CS , Dixit A , Mohan BC , Teoh JH , Pang SD , Tsang DCW , Teo SL , Wang CH .


Abstract
Incinerated sewage sludge ash is tested here as a cement and aggregate substitute in mortar blocks. It can be used at various percentages to reduce the overall cost of production and promote ash recycling. The compressive strength of the cast blocks was tested at 28 days to determine the optimal combination of ball milled ash (replacing cement) and sewage sludge ash (replacing sand). This was compared with a control block made of cement and sand only. The cast blocks with the optimal ash formulation were tested for their flexural strength and other properties such as surface functional groups, constituent phases and porosity. The control and ash mortars exhibited similar properties. A potential application of these blocks is to use them as part of seawalls. These blocks were thus suspended in the sea for 6 months. Marine organism attachment was observed over time in both control and ash mortar blocks. There was no significant difference between the mortars after 6 months. The mortar blocks were also subjected to leaching tests (NEN-7345). The leachates did not exhibit toxicity to microalgae. In contrast, mild toxicity was observed in the sea urchin embryo development assay. Overall, the study suggests that sewage sludge ash is a potential material to be used for seawall construction as it has the desirable mechanical properties. However, there remain some residual marine toxicity concerns that need to be further addressed.

PubMed ID: 35151736
Article link: Sci Total Environ