Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-51952
Pediatr Res 2023 Aug 01;942:676-682. doi: 10.1038/s41390-023-02514-4.
Show Gene links Show Anatomy links

Starr MC , Schmicker RH , Halloran BA , Heagerty P , Brophy P , Goldstein SL , Juul SE , Hingorani S , Askenazi DJ , PENUT Trial Consortium .


Abstract
BACKGROUND: Despite a growing understanding of bronchopulmonary dysplasia (BPD) and advances in management, BPD rates remain stable. There is mounting evidence that BPD may be due to a systemic insult, such as acute kidney injury (AKI). Our hypothesis was that severe AKI would be associated with BPD. METHODS: We conducted a secondary analysis of premature infants [24-27 weeks gestation] in the Recombinant Erythropoietin for Protection of Infant Renal Disease cohort (N = 885). We evaluated the composite outcome of Grade 2/3 BPD or death using generalized estimating equations. In an exploratory analysis, urinary biomarkers of angiogenesis (ANG1, ANG2, EPO, PIGF, TIE2, FGF, and VEGFA/D) were analyzed. RESULTS: 594 (67.1%) of infants had the primary composite outcome of Grade 2/3 BPD or death. Infants with AKI (aOR: 1.69, 95% CI: 1.16-2.46) and severe AKI (aOR: 2.05, 95% CI: 1.19-3.54). had increased risk of the composite outcome after multivariable adjustment Among 106 infants with urinary biomarkers assessed, three biomarkers (VEGFA, VEGFD, and TIE2) had AUC > 0.60 to predict BPD. CONCLUSIONS: Infants with AKI had a higher likelihood of developing BPD/death, with the strongest relationship seen in those with more severe AKI. Three urinary biomarkers of angiogenesis may have potential to predict BPD development. IMPACT: AKI is associated with lung disease in extremely premature infants, and urinary biomarkers may predict this relationship. Infants with AKI and severe AKI have higher odds of BPD or death. Three urinary angiogenesis biomarkers are altered in infants that develop BPD. These findings have the potential to drive future work to better understand the mechanistic pathways of BPD, setting the framework for future interventions to decrease BPD rates. A better understanding of the mechanisms of BPD development and the role of AKI would have clinical care, cost, and quality of life implications given the long-term effects of BPD.

PubMed ID: 36759749
Article link: Pediatr Res
Grant support: [+]


References [+] :
Ahlfeld, Relationship of structural to functional impairment during alveolar-capillary membrane development. 2015, Pubmed