Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46076
PLoS One 2018 Jan 01;131:e0190470. doi: 10.1371/journal.pone.0190470.
Show Gene links Show Anatomy links

Comparative metabolic ecology of tropical herbivorous echinoids on a coral reef.

Lewis LS , Smith JE , Eynaud Y .


Abstract
BACKGROUND: The metabolic rate of consumers is a key driver of ecosystem dynamics. On coral reefs, herbivorous echinoids consume fleshy algae, facilitating the growth of reef-building calcified organisms; however, little is known about differences among species in their metabolic and functional ecology. Here, we used log-linear (log-log) regression models to examine the allometric scaling of mass and routine metabolic rate for five common herbivorous echinoids on a Hawaiian coral reef: Echinothrix calamaris, E. diadema, Echinometra matthaei, Heterocentrotus mammillatus, and Tripneustes gratilla. Scaling relationships were then contrasted with empirical observations of echinoid ecology and general metabolic theory to broaden our understanding of diversity in the metabolic and functional ecology of tropical herbivorous echinoids. RESULTS: Test diameter and species explained 98% of the variation in mass, and mass and species explained 92.4% and 87.5% of the variation in individual (I) and mass-specific (B) metabolic rates, respectively. Scaling exponents did not differ for mass or metabolism; however, normalizing constants differed significantly among species. Mass varied as the cube of test diameter (b = 2.9), with HM exhibiting a significantly higher normalizing constant than other species, likely due to its heavily-calcified spines and skeleton. Individual metabolic rate varied approximately as the 2/5 power of mass (γ = 0.44); significantly smaller than the 3/4 universal scaling coefficient, but inclusive of 2/3 scaling. E. calamaris and H. mammillatus exhibited the lowest normalizing constants, corresponding with their slow-moving, cryptic, rock-boring life-history. In contrast, E. calamaris, E. diadema, and T. gratilla, exhibited higher metabolic rates, likely reflecting their higher levels of activity and ability to freely browse for preferred algae due to chemical anti-predator defenses. Thus, differences in metabolic scaling appeared to correspond with differences in phylogeny, behavior, and ecological function. Such comparative metabolic assessments are central to informing theory, ecological models, and the effective management of ecosystems.

PubMed ID: 29346442
PMC ID: PMC5773235
Article link: PLoS One


Genes referenced: LOC100889527 LOC100893907 LOC582915 ROCK


Article Images: [+] show captions
References [+] :
Brockington, The relative influence of temperature and food on the metabolism of a marine invertebrate. 2001, Pubmed, Echinobase