Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46215
Fish Shellfish Immunol 2018 Jun 01;77:175-186. doi: 10.1016/j.fsi.2018.03.053.
Show Gene links Show Anatomy links

Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems.

Chen J , Ren Y , Li Y , Xia B .


???displayArticle.abstract???
Bioflocs are not only a source of supplemental nutrition but also provide substantial probiotic bacteria and bioactive compounds, which play an important role in improving physiological health of aquatic organisms. A 60-day experiment was conducted to investigate the growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber in biofloc systems with different carbon sources (glucose, sucrose and starch). Control (no biofloc) and three biofloc systems were set up, and each group has three replicates. The results showed that biofloc volume (BFV) and total suspended solids (TSS) increased in the sequences of glucose > sucrose > starch and green sea cucumber > white sea cucumber during the experiment. The highest specific growth rates (SGRs) were observed in biofloc system with glucose as carbon source, which also had relatively lower glucose, lactate and cortisol levels in coelomic fluid and higher glycogen content in muscle compared to other groups. There were significant increased Bacillus and Lactobacillus counts of sea cucumber intestine in biofloc systems, and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) also showed obvious ascending trends. Significant increases in total coelomocytes counts (TCC), phagocytosis, respiratory burst, complement C3 content and lysozyme (LSZ) and acid phosphatase (ACP) activities of sea cucumber were all found in biofloc system (glucose). The expression patterns of most immune-related genes (i.e. Hsp90, Hsp70, c-type lectin (CL), toll-like receptor (TLR)) were up-regulated, suggesting the promotion of pathogen recognition ability and immune signaling pathways activation by biofloc. Furthermore, green and white sea cucumber had significantly higher survival rates in biofloc systems during the 14-day challenge test. In conclusion, biofloc technology could improve growth and physiological health of A. japonicus, by optimizing intestinal microbiota, strengthening antioxidant ability, enhancing non-specific immune response and disease resistance against pathogens, meanwhile glucose was recommended as optimal carbon source in biofloc system of sea cucumber culturing.

???displayArticle.pubmedLink??? 29609025
???displayArticle.link??? Fish Shellfish Immunol


Genes referenced: iqgap1 LOC100887844 LOC100888042 LOC105439191 LOC115919911 LOC115923479 LOC115929188 LOC583082 LOC762863 sod1