Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-43962
Microsc Res Tech 2015 Jul 01;787:540-52. doi: 10.1002/jemt.22507.
Show Gene links Show Anatomy links

Posterior regeneration following fission in the holothurian Cladolabes schmeltzii (Dendrochirotida: Holothuroidea).

Kamenev YO , Dolmatov IY .


???displayArticle.abstract???
The regeneration of the posterior portion of the body after fission was studied in the holothurian Cladolabes schmeltzii using electron microscopy methods. Following fission, the aquapharyngeal complex, gonad and anterior portion of the first descending part of the intestine remain in the anterior fragment of the body. The entire regeneration process is divided into five stages. In the first three stages, the digestive system and damaged ends of the longitudinal muscle bands regenerate. The intestine is formed through the rearrangement and growth of the remaining portion of the first descending part of the intestine. The gut anlage grows down the mesentery and joins the regenerating cloaca. The cloaca is formed from two sources: its posterior portion appears as a result of immersion of the epidermis, while the anterior portion develops from the terminal segment of the growing intestine. Regeneration of muscles progresses in the typical manner for echinoderms: through immersion and myogenic transformation of the coelomic epithelium. Respiratory trees appear in animals when the growth of the external part of the body has begun (fourth stage). They are formed as an outgrowth of the dorsal wall of the anterior portion of the cloaca. It was concluded that regeneration of the posterior portion of the body in the holothurian C. schmeltzii following fission is realized through morphallactic rearrangements of the remaining parts of organs. The main mechanism through which the digestive, respiratory, and contractile systems are formed is epithelial morphogenesis.

???displayArticle.pubmedLink??? 25921295
???displayArticle.link??? Microsc Res Tech