Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-44944
Mol Reprod Dev 2016 Dec 01;8312:1070-1082. doi: 10.1002/mrd.22746.
Show Gene links Show Anatomy links

Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization.

Picard V , Mulner-Lorillon O , Bourdon J , Morales J , Cormier P , Siegel A , Bellé R .


???displayArticle.abstract???
Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and β, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (ka ) of 0.024 sec-1 , for the activation of XXmRNAcyclinB, and a critical time interval (t2 ) of 42 min. The proportion of XXmRNAcyclinB form was also calculated to be largely dominant over the mRNAcyclinB form. Regulation of cyclin B biosynthesis is an example of a select protein whose translation is controlled by pathways that are distinct from housekeeping proteins, even though both involve the same cap-dependent initiation pathway. Therefore, this model should help provide insight to the signaling utilized for the biosynthesis of cyclin B and other select proteins. Mol. Reprod. Dev. 83: 1070-1082, 2016. © 2016 Wiley Periodicals, Inc.

???displayArticle.pubmedLink??? 27699901
???displayArticle.link??? Mol Reprod Dev


Genes referenced: LOC100887844 LOC115919910