Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-48073
Arch Immunol Ther Exp (Warsz) 2000 Jan 01;483:189-93.
Show Gene links Show Anatomy links

Immune phenomena in echinoderms.

Gliński Z , Jarosz J .


???displayArticle.abstract???
Advances in biochemistry and molecular biology have made it possible to identify a number of mechanisms active in the immune phenomena of echinoderms. It is obvious that echinoderms have the ability to distinguish between different foreign objects (pathologically changed tissues, microorganisms, parasites, grafts) and to express variable effector mechanisms which are elicited specifically and repeatably after a variety of non-self challenges. The molecular and biochemical basis for the expression of these variable defense mechanisms and the specific signals which elicit one type of effector mechanism are not, however, yet well known. The high capacity of coelomocytes to phagocytose, entrap and encapsulate invading microorganisms is a valid immune cell-mediated mechanism of echinoderms. The entrapped bacteria, discharged cellular materials and disintegrating granular cells are compacted and provoke the cellular encapsulation reaction. Moreover, humoral-based reactions form an integral part of the echinoderm defense system against microbial invaders. Factors such as lysozyme, perforins (hemolysins) vitellogenin and lectins are normal constituents of hemolymph, while cytokines are synthesized by echinoderms in response to infection.

???displayArticle.pubmedLink??? 10912624



Genes referenced: LOC115919910 LOC115919911 myp