Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Echinobase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Echinobase
ECB-ART-46204
Biol Trace Elem Res 2018 Dec 01;1862:554-561. doi: 10.1007/s12011-018-1309-y.
Show Gene links Show Anatomy links

Speciation Analysis of Trace Mercury in Sea Cucumber Species of Apostichopus japonicus Using High-Performance Liquid Chromatography Conjunction With Inductively Coupled Plasma Mass Spectrometry.

Liu H , Luo J , Ding T , Gu S , Yang S , Yang M .


???displayArticle.abstract???
In this paper, a simple and cost-effective method using high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry with a rapid ultrasound-assisted extraction was used for analysis speciation of trace mercury in sea cucumber species of Apostichopus japonicus. The effective separation of inorganic mercury, methylmercury, and ethylmercury was achieved within 10 min using Agilent ZORBAX SB-C18 analytical and guard columns with an isocratic mobile phase consisting of 8% methanol and 92% H2O containing 0.12% L-cysteine (m/v) and 0.01 mol/L ammonium acetate. Mercury species were extracted from A. japonicus samples using a solution containing 2-mercaptoethanol, L-cysteine, and hydrochloric acid and sonicating for 0.5 h. The limits of detection of inorganic mercury, methylmercury, and ethylmercury were 0.12, 0.08, and 0.20 μg/L, and the minimum detectable concentrations (measured at 0.500 g sample volume in 10.00 mL) were 2.4, 1.6, and 4.0 μg/kg, respectively. Analysis of a scallop certified reference material (GBW 10024) revealed accordance between the experimental and certified values. This study provides a reference for the evaluation of mercury speciation in sea cucumber and other seafood.

???displayArticle.pubmedLink??? 29574672
???displayArticle.link??? Biol Trace Elem Res


Genes referenced: LOC100887844