ECB-ART-38802
Mech Dev
2003 Nov 01;12011:1351-83. doi: 10.1016/j.mod.2003.06.005.
Show Gene links
Show Anatomy links
Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development.
???displayArticle.abstract???
Epithelial-mesenchymal transitions (EMTs) are an important mechanism for reorganizing germ layers and tissues during embryonic development. They have both a morphogenic function in shaping the embryo and a patterning function in bringing about new juxtapositions of tissues, which allow further inductive patterning events to occur [Genesis 28 (2000) 23]. Whereas the mechanics of EMT in cultured cells is relatively well understood [reviewed in Biochem. Pharmacol. 60 (2000) 1091; Cell 105 (2001) 425; Bioessays 23 (2001) 912], surprisingly little is known about EMTs during embryonic development [reviewed in Acta Anat. 154 (1995) 8], and nowhere is the entire process well characterized within a single species. Embryonic (developmental) EMTs have properties that are not seen or are not obvious in culture systems or cancer cells. Developmental EMTs are part of a specific differentiative path and occur at a particular time and place. In some types of embryos, a relatively intact epithelium must be maintained while some of its cells de-epithelialize during EMT. In most cases de-epithelialization (loss of apical junctions) must occur in an orderly, patterned fashion in order that the proper morphogenesis results. Interestingly, we find that de-epithelialization is not always necessarily tightly coupled to the expression of mesenchymal phenotypes.Developmental EMTs are multi-step processes, though the interdependence and obligate order of the steps is not clear. The particulars of the process vary between tissues, species, and specific embryonic context. We will focus on ''primary'' developmental EMTs, which are those occurring in the initial epiblast or embryonic epithelium. ''Secondary'' developmental EMT events are those occurring in epithelial tissues that have reassembled within the embryo from mesenchymal cells. We will review and compare a number of primary EMT events from across the metazoans, and point out some of the many open questions that remain in this field.
???displayArticle.pubmedLink??? 14623443
???displayArticle.link??? Mech Dev
Genes referenced: LOC115919910 slc22a13