Click
here to close Hello! We notice that
you are using Internet Explorer, which is not supported by Echinobase
and may cause the site to display incorrectly. We suggest using a
current version of Chrome,
FireFox,
or Safari.
Dev Biol
2012 Apr 01;3641:77-87. doi: 10.1016/j.ydbio.2012.01.017.
Show Gene links
Show Anatomy links
A comprehensive analysis of Delta signaling in pre-gastrular sea urchin embryos.
Materna SC
,
Davidson EH
.
???displayArticle.abstract???
In sea urchin embryos Delta signaling specifies non-skeletogenic mesoderm (NSM). Despite the identification of some direct targets, several aspects of Delta Notch (D/N) signaling remain supported only by circumstantial evidence. To obtain a detailed and more complete image of Delta function we followed a systems biology approach and evaluated the effects of D/N perturbation on expression levels of 205 genes up to gastrulation. This gene set includes virtually all transcription factors that are expressed in a localized fashion by mid-gastrulation, and which thus provide spatial regulatory information to the embryo. Also included are signaling factors and some pigment cell differentiation genes. We show that the number of pregastrular D/N signaling targets among these regulatory genes is small and is almost exclusively restricted to non-skeletogenic mesoderm genes. However, Delta signaling also activates foxY in the small micromeres. As is the early NSM, the small micromeres are in direct contact with Delta expressing skeletogenic mesoderm. In contrast, no endoderm regulatory genes are activated by Delta signaling even during the second phase of delta expression, when this gene is transcribed in NSM cells adjacent to the endoderm. During this phase Delta provides an ongoing input which continues to activate foxY expression in small micromere progeny. Disruption of the second phase of Delta expression specifically abolishes specification of late mesodermal derivatives such as the coelomic pouches to which the small micromeres contribute.
Barolo,
Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling.
2002, Pubmed
Barolo,
Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling.
2002,
Pubmed
Calestani,
Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening.
2003,
Pubmed
,
Echinobase
Calestani,
Cis-regulatory analysis of the sea urchin pigment cell gene polyketide synthase.
2010,
Pubmed
,
Echinobase
Cameron,
Macromere cell fates during sea urchin development.
1991,
Pubmed
,
Echinobase
Croce,
Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Davidson,
Emerging properties of animal gene regulatory networks.
2010,
Pubmed
Davidson,
A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo.
2002,
Pubmed
,
Echinobase
Duboc,
Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Geiss,
Direct multiplexed measurement of gene expression with color-coded probe pairs.
2008,
Pubmed
Hinman,
Evolutionary plasticity of developmental gene regulatory network architecture.
2007,
Pubmed
,
Echinobase
Howard-Ashby,
Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development.
2006,
Pubmed
,
Echinobase
Howard-Ashby,
Gene families encoding transcription factors expressed in early development of Strongylocentrotus purpuratus.
2006,
Pubmed
,
Echinobase
Hughes,
A novel role for gamma-secretase in the formation of primitive streak-like intermediates from ES cells in culture.
2009,
Pubmed
Juliano,
Nanos functions to maintain the fate of the small micromere lineage in the sea urchin embryo.
2010,
Pubmed
,
Echinobase
Lee,
Exclusive developmental functions of gatae cis-regulatory modules in the Strongylocentrorus purpuratus embryo.
2007,
Pubmed
,
Echinobase
Lee,
Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors.
2004,
Pubmed
,
Echinobase
Materna,
High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development.
2010,
Pubmed
,
Echinobase
Materna,
The C2H2 zinc finger genes of Strongylocentrotus purpuratus and their expression in embryonic development.
2006,
Pubmed
,
Echinobase
Oliveri,
Global regulatory logic for specification of an embryonic cell lineage.
2008,
Pubmed
,
Echinobase
Oliveri,
Repression of mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo.
2006,
Pubmed
,
Echinobase
Oliveri,
Development. Built to run, not fail.
2007,
Pubmed
Peter,
The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage.
2010,
Pubmed
,
Echinobase
Peter,
Evolution of gene regulatory networks controlling body plan development.
2011,
Pubmed
Peter,
A gene regulatory network controlling the embryonic specification of endoderm.
2011,
Pubmed
,
Echinobase
Peterson,
A Fringe-modified Notch signal affects specification of mesoderm and endoderm in the sea urchin embryo.
2005,
Pubmed
,
Echinobase
Poustka,
A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks.
2007,
Pubmed
,
Echinobase
Range,
LvNumb works synergistically with Notch signaling to specify non-skeletal mesoderm cells in the sea urchin embryo.
2008,
Pubmed
,
Echinobase
Ransick,
New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
2002,
Pubmed
,
Echinobase
Ransick,
cis-regulatory processing of Notch signaling input to the sea urchin glial cells missing gene during mesoderm specification.
2006,
Pubmed
,
Echinobase
Revilla-i-Domingo,
A missing link in the sea urchin embryo gene regulatory network: hesC and the double-negative specification of micromeres.
2007,
Pubmed
,
Echinobase
Revilla-i-Domingo,
R11: a cis-regulatory node of the sea urchin embryo gene network that controls early expression of SpDelta in micromeres.
2004,
Pubmed
,
Echinobase
Rizzo,
Identification and developmental expression of the ets gene family in the sea urchin (Strongylocentrotus purpuratus).
2006,
Pubmed
,
Echinobase
Ruffins,
A clonal analysis of secondary mesenchyme cell fates in the sea urchin embryo.
1993,
Pubmed
,
Echinobase
Sherwood,
LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo.
1999,
Pubmed
,
Echinobase
Smith,
Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo.
2008,
Pubmed
,
Echinobase
Sweet,
LvDelta is a mesoderm-inducing signal in the sea urchin embryo and can endow blastomeres with organizer-like properties.
2002,
Pubmed
,
Echinobase
Tu,
Sea urchin Forkhead gene family: phylogeny and embryonic expression.
2006,
Pubmed
,
Echinobase
Voronina,
Vasa protein expression is restricted to the small micromeres of the sea urchin, but is inducible in other lineages early in development.
2008,
Pubmed
,
Echinobase
Walton,
Genomics and expression profiles of the Hedgehog and Notch signaling pathways in sea urchin development.
2006,
Pubmed
,
Echinobase
Wang,
Notch signaling and Notch signaling modifiers.
2011,
Pubmed
de-Leon,
Information processing at the foxa node of the sea urchin endomesoderm specification network.
2010,
Pubmed
,
Echinobase